330 resultados para Diffusion tensor imaging (DTI)
Resumo:
Cancer is a major health issue that absorbs the attention of a large part of the biomedical research. Intercalating agents bind to DNA molecules and can inhibit their synthesis and transcription; thus, they are increasingly used as drugs to fight cancer. In this work, we show how atomic force microscopy in liquid can characterize, through time-lapse imaging, the dynamical influence of intercalating agents on the supercoiling of DNA, improving our understanding of the drug's effect.
Resumo:
During the development of Arabidopsis and other land plants, diffusion barriers are formed in the apoplast of specialized tissues within a variety of plant organs. While the cuticle of the epidermis is the primary diffusion barrier in the shoot, the Casparian strips and suberin lamellae of the endodermis and the periderm represent the diffusion barriers in the root. Different classes of molecules contribute to the formation of extracellular diffusion barriers in an organ- and tissue-specific manner. Cutin and wax are the major components of the cuticle, lignin forms the early Casparian strip, and suberin is deposited in the stage II endodermis and the periderm. The current status of our understanding of the relationships between the chemical structure, ultrastructure and physiological functions of plant diffusion barriers is discussed. Specific aspects of the synthesis of diffusion barrier components and protocols that can be used for the assessment of barrier function and important barrier properties are also presented.
Resumo:
We propose a novel compressed sensing technique to accelerate the magnetic resonance imaging (MRI) acquisition process. The method, coined spread spectrum MRI or simply s(2)MRI, consists of premodulating the signal of interest by a linear chirp before random k-space under-sampling, and then reconstructing the signal with nonlinear algorithms that promote sparsity. The effectiveness of the procedure is theoretically underpinned by the optimization of the coherence between the sparsity and sensing bases. The proposed technique is thoroughly studied by means of numerical simulations, as well as phantom and in vivo experiments on a 7T scanner. Our results suggest that s(2)MRI performs better than state-of-the-art variable density k-space under-sampling approaches.
Resumo:
Purpose: To evaluate whether parametric imaging with contrast material-enhanced ultrasonography (US) is superior to visual assessment for the differential diagnosis of focal liver lesions (FLLs). Materials and Methods: This study had institutional review board approval, and verbal patient informed consent was obtained. Between August 2005 and October 2008, 146 FLLs in 145 patients (63 women, 82 men; mean age, 62.5 years; age range, 22-89 years) were imaged with real-time low-mechanical-index contrast-enhanced US after a bolus injection of 2.4 mL of a second-generation contrast agent. Clips showing contrast agent uptake kinetics (including arterial, portal, and late phases) were recorded and subsequently analyzed off-line with dedicated image processing software. Analysis of the dynamic vascular patterns (DVPs) of lesions with respect to adjacent parenchyma allowed mapping DVP signatures on a single parametric image. Cine loops of contrast-enhanced US and results from parametric imaging of DVP were assessed separately by three independent off-site readers who classified each lesion as benign, malignant, or indeterminate. Sensitivity, specificity, accuracy, and positive and negative predictive values were calculated for both techniques. Interobserver agreement (κ statistics) was determined. Results: Sensitivities for visual interpretation of cine loops for the three readers were 85.0%, 77.9%, and 87.6%, which improved significantly to 96.5%, 97.3%, and 96.5% for parametric imaging, respectively (P < .05, McNemar test), while retaining high specificity (90.9% for all three readers). Accuracy scores of parametric imaging were higher than those of conventional contrast-enhanced US for all three readers (P < .001, McNemar test). Interobserver agreement increased with DVP parametric imaging compared with conventional contrast-enhanced US (change of κ from 0.54 to 0.99). Conclusion: Parametric imaging of DVP improves diagnostic performance of contrast-enhanced US in the differentiation between malignant and benign FLLs; it also provides excellent interobserver agreement.
Resumo:
In this work we present a first feasibility study of the ClearPEM technology for simultaneous PET-MR imaging. The mutual electromagnetic interference (EMI) effects between both systems were evaluated on a 7 T magnet by characterizing the response behavior of the ClearPEM detectors and front-end electronics to pulsed RF power and switched magnetic field gradients; and by analyzing the MR system performance degradation from noise pickup into the RF receiver chain, and from magnetic susceptibility artifacts caused by PET front-end materials.
Resumo:
In alkaline lavas, the chemical zoning of megacrystals of spinel is due to the cationic exchange between the latter and the host lava. The application of Fick's law to cationic diffusion profiles allows to calculate the time these crystals have stayed in the lava. Those which are in a chemical equilibrium were in contact with the lava during 20 to 30 days, whereas megacrystals lacking this equilibrium were in contact only for 3 or 4 days. The duration of the rise of an ultrabasic nodule in the volcanic chimney was calculated by applying Stokes' law.
Resumo:
The differentiation between benign and malignant focal liver lesions plays an important role in diagnosis of liver disease and therapeutic planning of local or general disease. This differentiation, based on characterization, relies on the observation of the dynamic vascular patterns (DVP) of lesions with respect to adjacent parenchyma, and may be assessed during contrast-enhanced ultrasound imaging after a bolus injection. For instance, hemangiomas (i.e., benign lesions) exhibit hyper-enhanced signatures over time, whereas metastases (i.e., malignant lesions) frequently present hyperenhanced foci during the arterial phase and always become hypo-enhanced afterwards. The objective of this work was to develop a new parametric imaging technique, aimed at mapping the DVP signatures into a single image called a DVP parametric image, conceived as a diagnostic aid tool for characterizing lesion types. The methodology consisted in processing a time sequence of images (DICOM video data) using four consecutive steps: (1) pre-processing combining image motion correction and linearization to derive an echo-power signal, in each pixel, proportional to local contrast agent concentration over time; (2) signal modeling, by means of a curve-fitting optimization, to compute a difference signal in each pixel, as the subtraction of adjacent parenchyma kinetic from the echopower signal; (3) classification of difference signals; and (4) parametric image rendering to represent classified pixels as a support for diagnosis. DVP parametric imaging was the object of a clinical assessment on a total of 146 lesions, imaged using different medical ultrasound systems. The resulting sensitivity and specificity were 97% and 91%, respectively, which compare favorably with scores of 81 to 95% and 80 to 95% reported in medical literature for sensitivity and specificity, respectively.
Resumo:
Solid pseudopapillary tumor of the pancreas (SPPP) is a very rare pancreatic tumor with low malignancy potential, occurring mostly in adolescent females and often not considered in the differential diagnosis of pancreas tumors in children. Patients with SPPP usually present with non specific abdominal symptoms and normal clinical laboratory tests. Between 2005 and 2007, 3 cases of SPPP were evaluated in our institution. The purpose of this communication is to describe the typical imaging findings of the SPPP tumor at US, CT and MRI and to correlate the images with the macro- and microscopic features of the lesion.
Resumo:
Cross-sectional imaging techniques such as magnetic resonance imaging and ultrasound are becoming essential tools not only for making an early diagnosis of rheumatoid arthritis, but also to help clarify the prognosis of the disease and better assess the response to various therapies. This article summarises the recommendations established in 2013 by the European League Against Rheumatism on the role of imaging in the diagnosis and follow-up of rheumatoid arthritis, while adding comments and emphasising on our Swiss experience with the use of ultrasound.
Resumo:
Among numerous magnetic resonance imaging (MRI) techniques, perfusion MRI provides insight into the passage of blood through the brain's vascular network non-invasively. Studying disease models and transgenic mice would intrinsically help understanding the underlying brain functions, cerebrovascular disease and brain disorders. This study evaluates the feasibility of performing continuous arterial spin labeling (CASL) on all cranial arteries for mapping murine cerebral blood flow at 9.4 T. We showed that with an active-detuned two-coil system, a labeling efficiency of 0.82 ± 0.03 was achieved with minimal magnetization transfer residuals in brain. The resulting cerebral blood flow of healthy mouse was 99 ± 26 mL/100g/min, in excellent agreement with other techniques. In conclusion, high magnetic fields deliver high sensitivity and allowing not only CASL but also other MR techniques, i.e. (1)H MRS and diffusion MRI etc, in studying murine brains.
Resumo:
Miniature diffusion size classifiers (miniDiSC) are novel handheld devices to measure ultrafine particles (UFP). UFP have been linked to the development of cardiovascular and pulmonary diseases; thus, detection and quantification of these particles are important for evaluating their potential health hazards. As part of the UFP exposure assessments of highwaymaintenance workers in western Switzerland, we compared a miniDiSC with a portable condensation particle counter (P-TRAK). In addition, we performed stationary measurements with a miniDiSC and a scanning mobility particle sizer (SMPS) at a site immediately adjacent to a highway. Measurements with miniDiSC and P-TRAK correlated well (correlation of r = 0.84) but average particle numbers of the miniDiSC were 30%âeuro"60% higher. This difference was significantly increased for mean particle diameters below 40 nm. The correlation between theminiDiSC and the SMPSduring stationary measurements was very high (r = 0.98) although particle numbers from the miniDiSC were 30% lower. Differences between the three devices were attributed to the different cutoff diameters for detection. Correction for this size dependent effect led to very similar results across all counters.We did not observe any significant influence of other particle characteristics. Our results suggest that the miniDiSC provides accurate particle number concentrations and geometric mean diameters at traffic-influenced sites, making it a useful tool for personal exposure assessment in such settings.
Resumo:
Objectifs: Déterminer la fréquence et les facteurs prédictifs de l'effet T2 shine-through (T2st) dans l'hémangiome hépatique (HH). Matériels et méthodes: Entre janvier 2010 et novembre 2011, l'imagerie par résonance magnétique (IRM) du foie de 149 patients avec 400 HH a été revue rétrospectivement. Les caractéristiques lésionnelles : taille, localisation, signal et aspect en T1, T2 et diffusion, T2st, coefficient apparent de diffusion de l'HH et du foie (ADChh et ADCf) et type de rehaussement ont été évalués. Résultats: Le T2st était observé dans 53 % des HH. Sa présence était corrélée positivement avec la taille (p=0,046) et négativement avec ADChh et ADCf (p<0,0001, p=0,021). Le T2st était plus fréquent dans le lobe gauche vs droit (p=0,038), et dans les HH typiques (hypersignal T2 et rehaussement en mottes, p=0,0043). L'analyse multivariée retrouvait comme facteurs indépendants de la présence d'un T2st : ADChh et le type de rehaussement. Conclusion: Le T2st est fréquemment observé dans les HH et notamment les formes typiques. Sa présence ne remet pas en question le diagnostic dans les formes typiques.
Resumo:
BACKGROUND: Coronary in-stent restenosis cannot be directly assessed by magnetic resonance angiography (MRA) because of the local signal void of currently used stainless steel stents. The aim of this study was to investigate the potential of a new, dedicated, coronary MR imaging (MRI) stent for artifact-free, coronary MRA and in-stent lumen and vessel wall visualization. METHODS AND RESULTS: Fifteen prototype stents were deployed in coronary arteries of 15 healthy swine and investigated with a double-oblique, navigator-gated, free-breathing, T2-prepared, 3D cartesian gradient-echo sequence; a T2-prepared, 3D spiral gradient-echo sequence; and a T2-prepared, 3D steady-state, free-precession coronary MRA sequence. Furthermore, black-blood vessel wall imaging by a dual-inversion-recovery, turbo spin-echo sequence was performed. Artifacts of the stented vessel segment and signal intensities of the coronary vessel lumen inside and outside the stent were assessed. With all investigated sequences, the vessel lumen and wall could be visualized without artifacts, including the stented vessel segment. No signal intensity alterations inside the stent when compared with the vessel lumen outside the stent were found. CONCLUSIONS: The new, coronary MRI stent allows for completely artifact-free coronary MRA and vessel wall imaging.
Resumo:
This article builds on the recent policy diffusion literature and attempts to overcome one of its major problems, namely the lack of a coherent theoretical framework. The literature defines policy diffusion as a process where policy choices are interdependent, and identifies several diffusion mechanisms that specify the link between the policy choices of the various actors. As these mechanisms are grounded in different theories, theoretical accounts of diffusion currently have little internal coherence. In this article we put forward an expected-utility model of policy change that is able to subsume all the diffusion mechanisms. We argue that the expected utility of a policy depends on both its effectiveness and the payoffs it yields, and we show that the various diffusion mechanisms operate by altering these two parameters. Each mechanism affects one of the two parameters, and does so in distinct ways. To account for aggregate patterns of diffusion, we embed our model in a simple threshold model of diffusion. Given the high complexity of the process that results, strong analytical conclusions on aggregate patterns cannot be drawn without more extensive analysis which is beyond the scope of this article. However, preliminary considerations indicate that a wide range of diffusion processes may exist and that convergence is only one possible outcome.