343 resultados para CYTOTOXIC


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metastatic melanomas are frequently refractory to most adjuvant therapies such as chemotherapies and radiotherapies. Recently, immunotherapies have shown good results in the treatment of some metastatic melanomas. Immune cell infiltration in the tumor has been associated with successful immunotherapy. More generally, tumor infiltrating lymphocytes (TILs) in the primary tumor and in metastases of melanoma patients have been demonstrated to correlate positively with favorable clinical outcomes. Altogether, these findings suggest the importance of being able to identify, quantify and characterize immune infiltration at the tumor site for a better diagnostic and treatment choice. In this paper, we used Fourier Transform Infrared (FTIR) imaging to identify and quantify different subpopulations of T cells: the cytotoxic T cells (CD8+), the helper T cells (CD4+) and the regulatory T cells (T reg). As a proof of concept, we investigated pure populations isolated from human peripheral blood from 6 healthy donors. These subpopulations were isolated from blood samples by magnetic labeling and purities were assessed by Fluorescence Activated Cell Sorting (FACS). The results presented here show that Fourier Transform Infrared (FTIR) imaging followed by supervised Partial Least Square Discriminant Analysis (PLS-DA) allows an accurate identification of CD4+ T cells and CD8+ T cells (>86%). We then developed a PLS regression allowing the quantification of T reg in a different mix of immune cells (e.g. Peripheral Blood Mononuclear Cells (PBMCs)). Altogether, these results demonstrate the sensitivity of infrared imaging to detect the low biological variability observed in T cell subpopulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enhancing immune responses with immune-modulatory monoclonal antibodies directed to inhibitory immune receptors is a promising modality in cancer therapy. Clinical efficacy has been demonstrated with antibodies blocking inhibitory immune checkpoints such as cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) or PD-1/PD-L1. Treatment with ipilimumab, a fully human CTLA-4-specific mAb, showed durable clinical efficacy in metastatic melanoma; its mechanism of action is, however, only partially understood. This is a study of 29 patients with advanced cutaneous melanoma treated with ipilimumab. We analyzed peripheral blood mononuclear cells (PBMCs) and matched melanoma metastases from 15 patients responding and 14 not responding to ipilimumab by multicolor flow cytometry, antibody-dependent cell-mediated cytotoxicity (ADCC) assay, and immunohistochemistry. PBMCs and matched tumor biopsies were collected 24 h before (i.e., baseline) and up to 4 wk after ipilimumab. Our findings show, to our knowledge for the first time, that ipilimumab can engage ex vivo FcγRIIIA (CD16)-expressing, nonclassical monocytes resulting in ADCC-mediated lysis of regulatory T cells (Tregs). In contrast, classical CD14(++)CD16(-) monocytes are unable to do so. Moreover, we show that patients responding to ipilimumab display significantly higher baseline peripheral frequencies of nonclassical monocytes compared with nonresponder patients. In the tumor microenvironment, responders have higher CD68(+)/CD163(+) macrophage ratios at baseline and show decreased Treg infiltration after treatment. Together, our results suggest that anti-CTLA-4 therapy may target Tregs in vivo. Larger translational studies are, however, warranted to substantiate this mechanism of action of ipilimumab in patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Known antiretroviral restriction factors are encoded by genes that are under positive selection pressure, induced during HIV-1 infection, up-regulated by interferons, and/or interact with viral proteins. To identify potential novel restriction factors, we performed genome-wide scans for human genes sharing molecular and evolutionary signatures of known restriction factors and tested the anti-HIV-1 activity of the most promising candidates. RESULTS: Our analyses identified 30 human genes that share characteristics of known restriction factors. Functional analyses of 27 of these candidates showed that over-expression of a strikingly high proportion of them significantly inhibited HIV-1 without causing cytotoxic effects. Five factors (APOL1, APOL6, CD164, TNFRSF10A, TNFRSF10D) suppressed infectious HIV-1 production in transfected 293T cells by >90% and six additional candidates (FCGR3A, CD3E, OAS1, GBP5, SPN, IFI16) achieved this when the virus was lacking intact accessory vpr, vpu and nef genes. Unexpectedly, over-expression of two factors (IL1A, SP110) significantly increased infectious HIV-1 production. Mechanistic studies suggest that the newly identified potential restriction factors act at different steps of the viral replication cycle, including proviral transcription and production of viral proteins. Finally, we confirmed that mRNA expression of most of these candidate restriction factors in primary CD4+ T cells is significantly increased by type I interferons. CONCLUSIONS: A limited number of human genes share multiple characteristics of genes encoding for known restriction factors. Most of them display anti-retroviral activity in transient transfection assays and are expressed in primary CD4+ T cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: PRES is a reversible neurotoxic state presenting with headache, altered mental status, visual loss, and seizures. Delayed diagnosis can be avoided if radiological patterns could distinguish PRES from cerebral ischemia. METHODS: Clinical and radiological data were collected on all hospitalized patients who had (1) discharge diagnosis of PRES and (2) acute CTP/CTA. Data were compared with 10 TIA patients with proven cytotoxic edema on MRI. RESULTS: Of the four PRES patients found, three were correlated with acute blood pressure and one with chemotherapy. At the radiological level, quantitative analyses of the CTP parameters showed that 2 out of 4 patients had bilaterally reduced CBF-values (23.2-47.1 ml/100g/min) in occipital regions, as seen in the pathological regions of TIA patients (27.3 ± 13.5 ml/100g/min). When compared with TIA patients, the pathological ROI's demonstrated decreased CBV-values (3.4-5.6 ml/100g). Vasogenic edema on MRI FLAIR imaging was seen in only one PRES patient, and cytotoxic edema on DWI-imaging was never found. CT angiography showed in one PRES patient a vasospasm-like unilateral posterior cerebral artery. CONCLUSIONS: If confirmed by other groups, CTP and CTA imaging in patients with acute visual loss and confusion may help to distinguish PRES from bi-occipital ischemia. These radiological parameters may identify PRES patients at risk for additional tissue infarction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The avidity of the T-cell receptor (TCR) for antigenic peptides presented by the peptide-MHC (pMHC) on cells is a key parameter for cell-mediated immunity. Yet a fundamental feature of most tumor antigen-specific CD8(+) T cells is that this avidity is low. In this study, we addressed the need to identify and select tumor-specific CD8(+) T cells of highest avidity, which are of the greatest interest for adoptive cell therapy in patients with cancer. To identify these rare cells, we developed a peptide-MHC multimer technology, which uses reversible Ni(2+)-nitrilotriacetic acid histidine tags (NTAmers). NTAmers are highly stable but upon imidazole addition, they decay rapidly to pMHC monomers, allowing flow-cytometric-based measurements of monomeric TCR-pMHC dissociation rates of living CD8(+) T cells on a wide avidity spectrum. We documented strong correlations between NTAmer kinetic results and those obtained by surface plasmon resonance. Using NTAmers that were deficient for CD8 binding to pMHC, we found that CD8 itself stabilized the TCR-pMHC complex, prolonging the dissociation half-life several fold. Notably, our NTAmer technology accurately predicted the function of large panels of tumor-specific T cells that were isolated prospectively from patients with cancer. Overall, our results demonstrated that NTAmers are effective tools to isolate rare high-avidity cytotoxic T cells from patients for use in adoptive therapies for cancer treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The design of therapeutic cancer vaccines is aimed at inducing high numbers and potent T cells that are able to target and eradicate malignant cells. This calls for close collaboration between cells of the innate immune system, in particular dendritic cells (DCs), and cells of the adaptive immune system, notably CD4+ helper T cells and CD8+ cytotoxic T cells. Therapeutic vaccines are aided by adjuvants, which can be, for example, Toll¬like Receptor agonists or agents promoting the cytosolic delivery of antigens, among others. Vaccination with long synthetic peptides (LSPs) is a promising strategy, as the requirement for their intracellular processing will mainly target LSPs to professional antigen presenting cells (APCs), hence avoiding the immune tolerance elicited by the presentation of antigens by non-professional APCs. The unique property of antigen cross-processing and cross-presentation activity by DCs plays an important role in eliciting antitumour immunity given that antigens from engulfed dead tumour cells require this distinct biological process to be processed and presented to CD8+T cells in the context of MHC class I molecules. DCs expressing the XCR1 chemokine receptor are characterised by their superior capability of antigen cross- presentation and priming of highly cytotoxic T lymphocyte (CTL) responses. Recently, XCR1 was found to be also expressed in tissue-residents DCs in humans, with a simitar transcriptional profile to that of cross- presenting murine DCs. This shed light into the value of harnessing this subtype of XCR1+ cross-presenting DCs for therapeutic vaccination of cancer. In this study, we explored ways of adjuvanting and optimising LSP therapeutic vaccinations by the use, in Part I, of the XCLl chemokine that selectively binds to the XCR1 receptor, as a mean to target antigen to the cross-presenting XCR1+ DCs; and in Part II, by the inclusion of Q.S21 in the LSP vaccine formulation, a saponin with adjuvant activity, as well as the ability to promote cytosolic delivery of LSP antigens due to its intrinsic cell membrane insertion activity. In Part I, we designed and produced XCLl-(OVA LSP)-Fc fusion proteins, and showed that their binding to XCR1+ DCs mediate their chemoattraction. In addition, therapeutic vaccinations adjuvanted with XCLl-(OVA LSP)-Fc fusion proteins significantly enhanced the OVA-specific CD8+ T cell response, and led to complete tumour regression in the EL4-OVA model, and significant control of tumour growth in the B16.0VA tumour model. With the aim to optimise the co-delivery of LSP antigen and XCLl to skin-draining lymph nodes we also tested immunisations using nanoparticle (NP)-conjugated OVA LSP in the presence or absence of XCLl chemokine. The NP-mediated delivery of LSP potentiated the CTL response seen in the blood of vaccinated mice, and NP-OVA LSP vaccine in the presence of XCLl led to higher blood frequencies of OVA-specific memory-precursor effector cells. Nevertheless, in these settings, the addition XCLl to NP-OVA LSP vaccine formulation did not increase its antitumour therapeutic effect. In the Part II, we assessed in HLA-A2/DR1 mice the immunogenicity of the Melan-AA27L LSP or the Melan-A26. 35 AA27l short synthetic peptide (SSP) used in conjunction with the saponin adjuvant QS21, aiming to identify a potent adjuvant formulation that elicits a quantitatively and qualitatively strong immune response to tumour antigens. We showed a high CTL immune response elicited by the use of Melan-A LSP or SSP with QS21, which both exerted similar killing capacity upon in vivo transfer of target cells expressing the Melan-A peptide in the context of HLA-A2 molecules. However, the response generated by the LSP immunisation comprised higher percentages of CD8+T cells of the central memory phenotype (CD44hl CD62L+ and CCR7+ CD62L+) than those of SSP immunisation, and most importantly, the strong LSP+QS21 response was strictly CD4+T cell-dependent, as shown upon CD4 T cell depletion. Altogether, these results suggest that both XCLl and QS21 may enhance the ability of LSP to prime CD8 specific T cell responses, and promote a long-term memory response. Therefore, these observations may have important implications for the design of protein or LSP-based cancer vaccines for specific immunotherapy of cancer -- Les vacans thérapeutiques contre le cancer visent à induire une forte et durable réponse immunitaire contre des cellules cancéreuses résiduelles. Cette réponse requiert la collaboration entre le système immunitaire inné, en particulier les cellules dendrites (DCs), et le système immunitaire adaptatif, en l'occurrence les lymphocytes TCD4 hdper et CD8 cytotoxiques. La mise au point d'adjuvants et de molécules mimant un agent pathogène tels les ligands TLRs ou d'autres agents facilitant l'internalisation d'antigènes, est essentielle pour casser la tolérance du système immunitaire contre les cellules cancéreuses afin de générer une réponse effectrice et mémoire contre la tumeur. L'utilisation de longs peptides synthétiques (LSPs) est une approche prometteuse du fait que leur présentation en tant qu'antigénes requiert leur internalisation et leur transformation par les cellules dendrites (DCs, qui sont les mieux à même d'éviter la tolérance immunitaire. Récemment une sous-population de DCs exprimant le récepteur XCR1 a été décrite comme ayant une capacité supérieure dans la cross-présentation d'antigènes, d'où un intérêt à développer des vaccins ciblant les DCs exprimant le XCR1. Durant ma thèse de doctorat, j'ai exploré différentes approches pour optimiser les vaccins avec LSPs. La première partie visait à cibler les XCR1-DCs à l'aide de la chemokine XCL1 spécifique du récepteur XCR1, soit sou s la forme de protéine de fusion XCL1-OVA LSP-Fc, soit associée à des nanoparticules. La deuxième partie a consisté à tester l'association des LSPs avec I adjuvant QS21 dérivant d'une saponine dans le but d'optimiser l'internalisation cytosolique des longs peptides. Les protéines de fusion XCLl-OVA-Fc développées dans la première partie de mon travail, ont démontré leur capacité de liaison spécifique sur les XCRl-DCs associée à leur capacité de chemo-attractio. Lorsque inclues dans une mmunisation de souris porteuse de tumeurs établies, ces protéines de fusion XCL1-0VA LSP-Fc et XCLl-Fc plus OVA LSP ont induites une forte réponse CDS OVA spécifique permettant la complète régression des tumeurs de modèle EL4- 0VA et un retard de croissance significatif de tumeurs de type B16-0VA. Dans le but d'optimiser le drainage des LSPs vers es noyaux lymphatiques, nous avons également testé les LSPs fixés de manière covalente à des nanoparticules co- injectees ou non avec la chemokine XCL1. Cette formulation a également permis une forte réponse CD8 accompagnée d'un effet thérapeutique significatif, mais l'addition de la chemokine XCL1 n'a pas ajouté d'effet anti-tumeur supplémentaire. Dans la deuxième partie de ma thèse, j'ai comparé l'immunogénicité de l'antigène humain Melan A soit sous la forme d un LSP incluant un épitope CD4 et CD8 ou sous la forme d'un peptide ne contenant que l'épitope CD8 (SSP) Les peptides ont été formulés avec l'adjuvant QS21 et testés dans un modèle de souris transgéniques pour les MHC let II humains, respectivement le HLA-A2 et DR1. Les deux peptides LSP et SSP ont généré une forte réponse CD8 similaire assoc.ee a une capacité cytotoxique équivalente lors du transfert in vivo de cellules cibles présentant le peptide SSP' Cependant les souris immunisées avec le Melan A LSP présentaient un pourcentage plus élevé de CD8 ayant un Phénotype «centra, memory» (CD44h' CD62L+ and CCR7+ CD62L+) que les souris immunisées avec le SSP, même dix mois après I'immunisation. Par ailleurs, la réponse CD8 au Melan A LSP était strictement dépendante des lymphocytes CD4, contrairement à l'immunisation par le Melan A SSP qui n'était pas affectée. Dans l'ensemble ces résultats suggèrent que la chemokine XCL1 et l'adjuvant QS21 améliorent la réponse CD8 à un long peptide synthétique, favorisant ainsi le développement d'une réponse anti-tumeur mémoire durable. Ces observations pourraient être utiles au développement de nouveau vaccins thérapeutiques contre les tumeurs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Le sarcome d'Ewing (SE) est la 2ème tumeur des os la plus fréquente chez les enfants, et le pronostic est sombre au stade métastatique. La pathogenèse du SE repose sur une translocation, provocant la fusion du domaine activateur du facteur de transcription EWS, avec la partie liant l'ADN de la protéine FLI-1. Les cellules souches cancéreuses (CSC) sont supposées être les moteurs de la croissance tumorale, et représente de ce fait des cibles thérapeutiques préférentielles. Dans ce travail nous nous sommes efforcés de comprendre, ainsi que de cibler les mécanismes liés à l'émergence des CSC dans le sarcome d'Ewing. La formation des CSC du ES est liée à un défaut de maturation des miRNAs provoqué par une sous-expression d'un gène, TARBP2, dans les CSC. Ce défaut de maturation peut être corrigé par un traitement des cellules avec de l'enoxacine, une fluoroquinolone utilisée pour traiter les infections urinaires. L'enoxacine seule n'étant pas suffisante pour éradiquer les tumeurs in vivo, nous avons testé la combinaison d'une thérapie ciblée sur les CSC avec une chimiothérapie classique, la doxorubicine, ciblant les cellules différentiées. In vitro l'enoxacine induit l'apoptose dans les CCS sans affecter les cellules différentiées, alors que à l'inverse, la doxorubicine n'affecte que les cellules de la « masse » tumorale. In vivo la combinaison de ces deux drogues inhibe la croissance de tumeurs provenant de cellules primaires xenotranplantées et éradique les CSCs. Nos résultats mettent en lumière une nouvelle approche thérapeutique directement applicable pour le sarcome d'Ewing, et pourraient ainsi rapidement déboucher sur des essais cliniques. Dans la deuxième partie de ce travail nous avons essayé de comprendre comment EWS-FLI1, la protéine de fusion issue de la translocation chromosomique du sarcome d'Ewing conduit à la génération des CSC. Pour cela nous avons effectué des ChIPseq (immunoprecipitation de la chromatine suivi de séquençage) pour EWS-FLI1 ainsi que pour certaines modifications histoniques. -- Ewing sarcoma family tumors (ESFT) are the second most frequent bone tumors in children and have a high rate of recurrence when metastatic at presentation. The pathogenesis of Ewing sarcoma is underlayed by a translocation, leading to the fusion of the trans-activating domain of EWS with the FLU DNA binding domain. Cancer stem cells (CSCs) are thought to be the driving force of tumor growth. In this work we focused on understanding the mechanisms underlying ESFT CSC emergence as well as defining targeted therapeutic strategies. Emergence of CSCs in ESFT has been shown to arise from a defect in TARBP2-dependent microRNA maturation, which can be corrected by exposure to the fluoroquinolone enoxacin. As enoxacin alone is not sufficient to reverse tumor growth in vivo, we assessed the effect of combining a drug that abrogates CSC properties with doxorubicin, a standard-of-care therapy in ESFT. Primary ESFT CSCs and bulk tumor cells were treated with different concentration of drugs and displayed divergent responses to doxorubicin and enoxacin. Doxorubicin, which targets the tumor bulk, displayed toxicity toward primary adherent ESFT cells in culture but not to CSC-enriched ESFT spheres. Conversely, enoxacin induced apoptosis but only in ESFT spheres and specifically on the CD133+ population. In combination, the two drugs markedly depleted CSC and strongly reduced primary growth in xenograft assays of two primary ESFT. Our results identify a potentially attractive therapeutic strategy for ESFT that combines mechanism-based targeting of CSC using a low toxicity antibiotic with a standard-of-care cytotoxic drug, offering immediate applications for clinical evaluation. In the second part of this work we performed chromatin immunopercipitation on CSCs and bulk cells for EWS-FLI1 binding as well as some chromatin modifications, and concluded that EWS-FLI1 shows cell context dependent binding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Before 2011, patients with advanced or metastatic melanoma had a particularly poor long-term prognosis. Since traditional treatments failed to confer a survival benefit, patients were preferentially entered into clinical trials of investigational agents. A greater understanding of the epidemiology and biology of disease has underpinned the development of newer therapies, including six agents that have been approved in the EU, US and/or Japan: a cytotoxic T-lymphocyte antigen-4 inhibitor (ipilimumab), two programmed cell death-1 receptor inhibitors (nivolumab and pembrolizumab), two BRAF inhibitors (vemurafenib and dabrafenib) and a MEK inhibitor (trametinib). The availability of these treatments has greatly improved the outlook for patients with advanced melanoma; however, a major consideration for physicians is now to determine how best to integrate these agents into clinical practice. Therapeutic decisions are complicated by the need to consider patient and disease characteristics, and individual treatment goals, alongside the different efficacy and safety profiles of agents with varying mechanisms of action. Long-term survival, an outcome largely out of reach with traditional systemic therapies, is now a realistic goal, creating the additional need to re-establish how clinical benefit is evaluated. In this review we summarise the current treatment landscape in advanced melanoma and discuss the promise of agents still in development. We also speculate on the future of melanoma treatment and discuss how combination and sequencing approaches may be used to optimise patient care in the future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural killer (NK) cells are cytotoxic lymphocytes that substantially contribute to the therapeutic benefit of antitumor antibodies like Rituximab, a crucial component in the treatment of B-cell malignancies. In chronic lymphocytic leukemia (CLL), the ability of NK cells to lyse the malignant cells and to mediate antibody-dependent cellular cytotoxicity upon Fc receptor stimulation is compromised, but the underlying mechanisms are largely unclear. We report here that NK-cells activation-dependently produce the tumor necrosis factor family member 'B-cell activating factor' (BAFF) in soluble form with no detectable surface expression, also in response to Fc receptor triggering by therapeutic CD20-antibodies. BAFF in turn enhanced the metabolic activity of primary CLL cells and impaired direct and Rituximab-induced lysis of CLL cells without affecting NK reactivity per se. The neutralizing BAFF antibody Belimumab, which is approved for treatment of systemic lupus erythematosus, prevented the effects of BAFF on the metabolism of CLL cells and restored their susceptibility to direct and Rituximab-induced NK-cell killing in allogeneic and autologous experimental systems. Our findings unravel the involvement of BAFF in the resistance of CLL cells to NK-cell antitumor immunity and Rituximab treatment and point to a benefit of combinatory approaches employing BAFF-neutralizing drugs in B-cell malignancies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacterial-fungal interactions have important physiologic and medical ramifications, but the mechanisms of these interactions are poorly understood. The gut is host to trillions of microorganisms, and bacterial-fungal interactions are likely to be important. Using a neutropenic mouse model of microbial gastrointestinal colonization and dissemination, we show that the fungus Candida albicans inhibits the virulence of the bacterium Pseudomonas aeruginosa by inhibiting P. aeruginosa pyochelin and pyoverdine gene expression, which plays a critical role in iron acquisition and virulence. Accordingly, deletion of both P. aeruginosa pyochelin and pyoverdine genes attenuates P. aeruginosa virulence. Heat-killed C. albicans has no effect on P. aeruginosa, whereas C. albicans secreted proteins directly suppress P. aeruginosa pyoverdine and pyochelin expression and inhibit P. aeruginosa virulence in mice. Interestingly, suppression or deletion of pyochelin and pyoverdine genes has no effect on P. aeruginosa's ability to colonize the GI tract but does decrease P. aeruginosa's cytotoxic effect on cultured colonocytes. Finally, oral iron supplementation restores P. aeruginosa virulence in P. aeruginosa and C. albicans colonized mice. Together, our findings provide insight into how a bacterial-fungal interaction can modulate bacterial virulence in the intestine. Previously described bacterial-fungal antagonistic interactions have focused on growth inhibition or colonization inhibition/modulation, yet here we describe a novel observation of fungal-inhibition of bacterial effectors critical for virulence but not important for colonization. These findings validate the use of a mammalian model system to explore the complexities of polymicrobial, polykingdom infections in order to identify new therapeutic targets for preventing microbial disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of novel effective immunotherapeutic agents and early clinical data hinting at significant activity in non-small cell lung cancer (NSCLC) has introduced yet another player in the field of management of advanced disease. At present, first-line cytotoxic chemotherapy is generally withheld pending results of molecular testing for any actionable genetic alteration that could lead to targeted treatment, and in their absence chemotherapy is prescribed as a default therapy. Phase III trials comparing head-to-head immune checkpoint inhibitors with standard platinum-based doublet chemotherapy are underway. Second-line chemotherapy is likewise being challenged in phase III trials, one of which having recently reported positive results in advanced squamous cell carcinoma. In tumors harboring actionable transforming genetic alterations such as EGFR mutations and ALK rearrangements, second- and third-generation inhibitors allow for multiple lines of targeted treatment beyond initial resistance, postponing the use of cytotoxic chemotherapy to very late lines of therapy. Chemotherapy as a longstanding but still present standard of care capable of prolonging survival, improving quality of life, and relieving symptoms sees its role increasingly restricted to clinical, immunological, and molecular subsets of patients where its activity and efficacy have never been tested prospectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brain injury is frequently observed after sepsis and may be primarily related to the direct effects of the septic insult on the brain (e.g., brain edema, ischemia, seizures) or to secondary/indirect injuries (e.g., hypotension, hypoxemia, hypocapnia, hyperglycemia). Management of brain injury in septic patients is first focused to exclude structural intracranial complications (e.g., ischemic/hemorrhagic stroke) and possible confounders (e.g., electrolyte alterations or metabolic disorders, such as dysglycemia). Sepsis-associated brain dysfunction is frequently a heterogeneous syndrome. Despite increasing understanding of main pathophysiologic determinants, therapy is essentially limited to protect the brain against further cerebral damage, by way of "simple" therapeutic manipulations of cerebral perfusion and oxygenation and by avoiding over-sedation. Non-invasive monitoring of cerebral perfusion and oxygenation with transcranial Doppler (TCD) and near-infrared spectroscopy (NIRS) is feasible in septic patients. Electroencephalography (EEG) allows detection of sepsis-related seizures and holds promise also as sedation monitoring. Brain CT-scan detects intra-cerebral structural lesions, while magnetic resonance imaging (MRI) provides important insights into primary mechanisms of sepsis-related direct brain injury, (e.g., cytotoxic vs. vasogenic edema) and the development of posterior reversible encephalopathy. Together with EEG and evoked potentials (EP), MRI is also important for coma prognostication. Emerging clinical evidence suggests monitoring of the brain in septic patients can be implemented in the ICU. The objective of this review was to summarize recent clinical data about the role of brain monitoring - including TCD, NIRS, EEG, EP, CT, and MRI - in patients with sepsis and to illustrate its potential utility for the diagnosis, management and prognostication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abs bind to unprocessed Ags, whereas cytotoxic CD8(+) T cells recognize peptides derived from endogenously processed Ags presented in the context of class I MHC complexes. We screened, by ELISA, human sera for Abs reacting specifically with the influenza matrix protein (IMP)-derived peptide58-66 displayed by HLA-A*0201 complexes. Among 653 healthy volunteers, blood donors, and women on delivery, high-titered HLA-A*0201/IMP58-66 complex-specific IgG Abs were detected in 11 females with a history of pregnancies and in 1 male, all HLA-A*0201(-). These Abs had the same specificity as HLA-A*0201/IMP58-66-specific cytotoxic T cells and bound neither to HLA-A*0201 nor the peptide alone. No such Abs were detected in HLA-A*0201(+) volunteers. These Abs were not cross-reactive to other self-MHC class I alleles displaying IMP58-66, but bound to MHC class I complexes of an HLA nonidentical offspring. HLA-A*0201/IMP58-66 Abs were also detected in the cord blood of newborns, indicating that HLA-A*0201/IMP58-66 Abs are produced in HLA-A*0201(-) mothers and enter the fetal blood system. That Abs can bind to peptides derived from endogenous Ags presented by MHC complexes opens new perspectives on interactions between the cellular and humoral immune system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. Molecular tests for breast cancer (BC) risk assessment are reimbursed by health insurances in Switzerland since the beginning of year 2015. The main current role of these tests is to help oncologists to decide about the usefulness of adjuvant chemotherapy in patients with early stage endocrine-sensitive and human epidermal growth factor receptor 2 (HER2)-negative BC. These gene expression signatures aim at predicting the risk of recurrence in this subgroup. One of them (OncotypeDx/OT) also predicts distant metastases rate with or without the addition of cytotoxic chemotherapy to endocrine therapy. The clinical utility of these tests -in addition to existing so-called "clinico-pathological" prognostic and predictive criteria (e.g. stage, grade, biomarkers status)-is still debated. We report a single center one year experience of the use of one molecular test (OT) in clinical decision making. Methods. We extracted from the CHUV Breast Cancer Center data base the total number of BC cases with estrogen-receptor positive (ER+), HER2-negative early breast cancer (node negative (pN0) disease or micrometastases in up to 3 lymph nodes) operated between September 2014 and August 2015. For the cases from this group in which a molecular test had been decided by the tumor board, we collected the clinicopathologic parameters, the initial tumor board decision, and the final adjuvant systemic therapy decision. Results. A molecular test (OT) was done in 12.2% of patients with ER + HER2 negative early BC. The median age was 57.4 years and the median invasive tumor size was 1.7 cm. These patients were classified by ODX testing (Recurrence Score) into low-, intermediate-, and high risk groups, respectively in 27.2%, 63.6% and 9% of cases. Treatment recommendations changed in 18.2%, predominantly from chemotherapyendocrine therapy to endocrine treatment alone. Of 8 patients originally recommended chemotherapy, 25% were recommended endocrine treatment alone after receiving the Recurrence Score result. Conclusions. Though reimbursed by health insurances since January 2015, molecular tests are used moderately in our institution as per the decision of the multidisciplinary tumor board. It's mainly used to obtain a complementary confirmation supporting the decision of no chemotherapy. The OncotypeDx Recurrence Score results were in the intermediate group in 66% of the 9 tested cases but contributed to avoid chemotherapy in 2 patients during the last 12 months.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. Mycosis Fungoides (MF) is the most common cutaneous T-cell lymphoma, and large cell trasformation (tMF) is an adverse prognostic event. Extra-cutaneous dissemination can occur in the course of the disease, but dissemination to the central nervous system (CNS) is uncommon. Moreover, CNS lymphomas are overall rare and most often of B-cell phenotype. We report a case of CNS large T-cell lymphoma presenting as multiple cerebral lesions in a patient with a history of MF. Methods. We report a case of a 33-year-old woman, known since the age of 16 for erythematous plaques thought to be atopic dermatitis, who developed, end 2012, multiple nodular skin lesions and peripheral adenopathies. Two skin lesions were biopsied simultaneously, and diagnosed as MF and tMF. A lymph node biopsy showed dermatopathic changes without lymphoma (Stage IIB). She received local treatment (UVB, PUVA and radiation therapy) and interferon therapy, and experienced almost complete remission. In 2015 neurological symptoms lead to evidence multiple cerebral lesions, suspicious for lymphoma, evaluated by stereotaxic biopsies. We compared histopathological and molecular features of these with previous skin specimens. After negative bone marrow staging biopsy, she was recently started on chemotherapy (MATRIX). Short follow-up shows rapidly worsening clinical conditions. Results. One of the initial skin biopsies showed atypical lymphoid cells with epidermotropism, Pautrier abcesses and CD4+ CD30- phenotype; the other revealed diffuse dermal infiltration by predominantly large cerebriform tumor cells with high proliferative fraction, and CD2−CD3 −CD4+/−CD7−CD30+ALK- EMA- non-cytotoxic immunophenotype. Altogether, these results led us to diagnose MF and tMF, respectively. The brain was infiltrated by large atypical lymphoid cells with cerebriform nuclei, somewhat anaplastic features and perivascular distribution. By immunohistochemistry, tumor cells were highly proliferative, with a CD2−CD3+CD5−CD7+CD30+ activated cytotoxic immunophenotype. A diagnosis of CD30+ cytotoxic peripheral T-cell lymphoma was retained. TRG and TRB clonality analyses revealed clonal rearrangements in skin and CNS biopsies, with identical patterns in both skin specimens but only minimally overlapping profiles when compared to the CNS sample. Der Pathologe 6 ? 2015 | 633 Conclusions. The reported case illustrates an uncommon finding of a CNS T-cell lymphoma in a patient with previous MF, questioning the clonal relationship between the two diseases and challenging the adequate classification of this CNS lymphoma as either a progression or a de novo lymphoma. Despite differences in immunophenotype and clonality patterns, this CNS lymphoma could possibly represent an aggressive divergent evolution of a primary cutaneous T-cell lymphoma. Additional sequencing is ongoing to try to solve the question.