600 resultados para Brain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Islet-brain 1 (IB1) was recently identified as a DNA-binding protein of the GLUT2 gene promoter. The mouse IB1 is the rat and human homologue of the Jun-interacting protein 1 (JIP-1) which has been recognized as a key player in the regulation of c-Jun amino-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) pathways. JIP-1 is involved in the control of apoptosis and may play a role in brain development and aging. Here, IB1 was studied in adult and developing mouse brain tissue by in situ hybridization, Northern and Western blot analysis at cellular and subcellular levels, as well as by immunocytochemistry in brain sections and cell cultures. IB1 expression was localized in the synaptic regions of the olfactory bulb, retina, cerebral and cerebellar cortex and hippocampus in the adult mouse brain. IB1 was also detected in a restricted number of axons, as in the mossy fibres from dentate gyrus in the hippocampus, and was found in soma, dendrites and axons of cerebellar Purkinje cells. After birth, IB1 expression peaks at postnatal day 15. IB1 was located in axonal and dendritic growth cones in primary telencephalon cells. By biochemical and subcellular fractionation of neuronal cells, IB1 was detected both in the cytosolic and membrane fractions. Taken together with previous data, the restricted neuronal expression of IB1 in developing and adult brain and its prominent localization in synapses suggest that the protein may be critical for cell signalling in developing and mature nerve terminals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aggregating cultures of mechanically dissociated fetal brain cells provide an excellent system for neurobiological studies of cellular growth and differentiation, but, in common with almost all culture systems, they have the disadvantage that crude serum is required in the medium. Although several cell lines have either been adapted to serum-free conditions or grown normally in serum-free media supplemented with hormones, trace elements and defined serum components, this approach has never been applied to differentiating primary cells of the central nervous system. We now describe the successful cultivation of aggregating fetal rat brain cells in a chemically defined, serum-free medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inflammatory mechanisms are known to contribute to the pathophysiology of traumatic brain injury (TBI). Since bradykinin is one of the first mediators activated during inflammation, we investigated the role of bradykinin and its receptors in posttraumatic secondary brain damage. We subjected wild-type (WT), B(1)-, and B(2)-receptor-knockout mice to controlled cortical impact (CCI) and analyzed tissue bradykinin as well as kinin receptor mRNA and protein expression up to 48 h thereafter. Brain edema, contusion volume, and functional outcome were assessed 24 h and 7 days after CCI. Tissue bradykinin was maximally increased 2 h after trauma (P<0.01 versus sham). Kinin B(1) receptor mRNA was upregulated up to four-fold 24 h after CCI. Immunohistochemistry showed that B(1) and B(2) receptors were expressed in the brain and were significantly upregulated in the traumatic penumbra 1 to 24 h after CCI. B(2)R(-/-) mice had significantly less brain edema (-51% versus WT, 24 h; P<0.001), smaller contusion volumes ( approximately 50% versus WT 24 h and 7 d after CCI; P<0.05), and better functional outcome 7 days after TBI as compared with WT mice (P<0.05). The present results show that bradykinin and its B(2) receptors play a causal role for brain edema formation and cell death after TBI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last five years, Deep Brain Stimulation (DBS) has become the most popular and effective surgical technique for the treatent of Parkinson's disease (PD). The Subthalamic Nucleus (STN) is the usual target involved when applying DBS. Unfortunately, the STN is in general not visible in common medical imaging modalities. Therefore, atlas-based segmentation is commonly considered to locate it in the images. In this paper, we propose a scheme that allows both, to perform a comparison between different registration algorithms and to evaluate their ability to locate the STN automatically. Using this scheme we can evaluate the expert variability against the error of the algorithms and we demonstrate that automatic STN location is possible and as accurate as the methods currently used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relationship of rat brain spectrin isoforms to microtubules of newborn and adult animals was studied. Spectrins were minor components in microtubule preparations. The microtubule-associated spectrin is a major calmodulin-binding protein. Radiolabelled brain spectrin(240/235) revealed specific microtubule binding activity in vitro, possibly via a tubulin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational network analysis provides new methods to analyze the brain's structural organization based on diffusion imaging tractography data. Networks are characterized by global and local metrics that have recently given promising insights into diagnosis and the further understanding of psychiatric and neurologic disorders. Most of these metrics are based on the idea that information in a network flows along the shortest paths. In contrast to this notion, communicability is a broader measure of connectivity which assumes that information could flow along all possible paths between two nodes. In our work, the features of network metrics related to communicability were explored for the first time in the healthy structural brain network. In addition, the sensitivity of such metrics was analysed using simulated lesions to specific nodes and network connections. Results showed advantages of communicability over conventional metrics in detecting densely connected nodes as well as subsets of nodes vulnerable to lesions. In addition, communicability centrality was shown to be widely affected by the lesions and the changes were negatively correlated with the distance from lesion site. In summary, our analysis suggests that communicability metrics that may provide an insight into the integrative properties of the structural brain network and that these metrics may be useful for the analysis of brain networks in the presence of lesions. Nevertheless, the interpretation of communicability is not straightforward; hence these metrics should be used as a supplement to the more standard connectivity network metrics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aggregating brain cell cultures were used as a model to study the effect of chronic exposure to low levels of lead acetate. Long-term maintenance of cultures could be improved by supplementation of the medium with albumin-bound lipids. Exposure for 9 days to 10(-6)-10(-4) M lead acetate caused a decrease of GABAergic (glutamic acid decarboxylase) and astrocytic (glutamine synthetase) markers which was also found after prolonged treatment (50 days) with 10(-7) M lead acetate. Total protein content and choline acetyltransferase were not changed. The results show that prolonged exposure of aggregating brain cell cultures to a low concentration of lead acetate causes distinct changes of cell type-specific parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Earlier contributions have documented significant changes in sensory, attention-related endogenous event-related potential (ERP) components and θ band oscillatory responses during working memory activation in patients with schizophrenia. In patients with first-episode psychosis, such studies are still scarce and mostly focused on auditory sensory processing. The present study aimed to explore whether subtle deficits of cortical activation are present in these patients before the decline of working memory performance. Methods: We assessed exogenous and endogenous ERPs and frontal θ event-related synchronization (ERS) in patients with first-episode psychosis and healthy controls who successfully performed an adapted 2-back working memory task, including 2 visual n-backworking memory tasks as well as oddball detection and passive fixation tasks. Results: We included 15 patients with first-episode psychosis and 18 controls in this study. Compared with controls, patients with first-episode psychosis displayed increased latencies of early visual ERPs and phasic θ ERS culmination peak in all conditions. However, they also showed a rapid recruitment of working memory-related neural generators, even in pure attention tasks, as indicated by the decreased N200 latency and increased amplitude of sustained θ ERS in detection compared with controls. Limitations: Owing to the limited sample size, no distinction was made between patients with first-episode psychosis with positive and negative symptoms. Although we controlled for the global load of neuroleptics, medication effect cannot be totally ruled out. Conclusion: The present findings support the concept of a blunted electroencephalographic response in patients with first-episode psychosis who recruit the maximum neural generators in simple attention conditions without being able to modulate their brain activation with increased complexity of working memory tasks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: Brain metastases are a common clinical problem, and only limited treatment options exist. We review recent advances in medical brain metastasis research with a focus on the most common tumor types associated with secondary brain colonization: melanoma, breast cancer and lung cancer. We speculate on opportunities for drug development in patients with brain metastases, both as a treatment of established disease and as an adjuvant and prophylactic strategy. RECENT FINDINGS: BRAF inhibitors and the immunomodulatory anticytotoxic T-lymphocyte-associated antigen 4 antibody ipilimumab have shown clinically meaningful activity in melanoma patients with brain metastases. In breast cancer, current studies on drug treatment of brain metastases are mainly focusing on human epidermal growth factor receptor 2 targeting agents such as lapatinib. Emerging data seem to implicate a potential role of targeted agents including antiangiogenic compounds, pazopanib, and epithelial growth factor receptor inhibitors for prevention of brain metastasis formation in breast cancer or nonsmall cell lung cancer. SUMMARY: Novel drugs are beginning to enter clinical practice for selected patients with brain metastases. The promising findings from recent studies may fuel more research on brain metastases and their optimal drug treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prognosis after severe traumatic brain injury (TBI) is determined by the severity of initial injury and secondary cerebral damage. The main determinants of secondary cerebral damage are brain ischemia and oedema. Traumatic brain injury is a heterogeneous disease. Head CT-scan is essential in evaluating initial type of injury and severity of brain oedema. A standardised approach based on prevention and treatment of secondary cerebral damage is the only effective therapeutic strategy of severe TBI. We review the classification, pathophysiology and treatment of secondary cerebral damage after severe TBI and discuss the management of intracranial hypertension, cerebral perfusion pressure and brain ischemia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evidence from magnetic resonance imaging (MRI) studies shows that healthy aging is associated with profound changes in cortical and subcortical brain structures. The reliable delineation of cortex and basal ganglia using automated computational anatomy methods based on T1-weighted images remains challenging, which results in controversies in the literature. In this study we use quantitative MRI (qMRI) to gain an insight into the microstructural mechanisms underlying tissue ageing and look for potential interactions between ageing and brain tissue properties to assess their impact on automated tissue classification. To this end we acquired maps of longitudinal relaxation rate R1, effective transverse relaxation rate R2* and magnetization transfer - MT, from healthy subjects (n=96, aged 21-88 years) using a well-established multi-parameter mapping qMRI protocol. Within the framework of voxel-based quantification we find higher grey matter volume in basal ganglia, cerebellar dentate and prefrontal cortex when tissue classification is based on MT maps compared with T1 maps. These discrepancies between grey matter volume estimates can be attributed to R2* - a surrogate marker of iron concentration, and further modulation by an interaction between R2* and age, both in cortical and subcortical areas. We interpret our findings as direct evidence for the impact of ageing-related brain tissue property changes on automated tissue classification of brain structures using SPM12. Computational anatomy studies of ageing and neurodegeneration should acknowledge these effects, particularly when inferring about underlying pathophysiology from regional cortex and basal ganglia volume changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complex relationship between structural and functional connectivity, as measured by noninvasive imaging of the human brain, poses many unresolved challenges and open questions. Here, we apply analytic measures of network communication to the structural connectivity of the human brain and explore the capacity of these measures to predict resting-state functional connectivity across three independently acquired datasets. We focus on the layout of shortest paths across the network and on two communication measures-search information and path transitivity-which account for how these paths are embedded in the rest of the network. Search information is an existing measure of information needed to access or trace shortest paths; we introduce path transitivity to measure the density of local detours along the shortest path. We find that both search information and path transitivity predict the strength of functional connectivity among both connected and unconnected node pairs. They do so at levels that match or significantly exceed path length measures, Euclidean distance, as well as computational models of neural dynamics. This capacity suggests that dynamic couplings due to interactions among neural elements in brain networks are substantially influenced by the broader network context adjacent to the shortest communication pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated morphometric brain changes in patients with Parkinson's disease (PD) that are associated with balance training. A total of 20 patients and 16 healthy matched controls learned a balance task over a period of 6 weeks. Balance testing and structural magnetic resonance imaging were performed before and after 2, 4, and 6 training weeks. Balance performance was re-evaluated after ∼20 months. Balance training resulted in performance improvements in both groups. Voxel-based morphometry revealed learning-dependent gray matter changes in the left hippocampus in healthy controls. In PD patients, performance improvements were correlated with gray matter changes in the right anterior precuneus, left inferior parietal cortex, left ventral premotor cortex, bilateral anterior cingulate cortex, and left middle temporal gyrus. Furthermore, a TIME Ã GROUP interaction analysis revealed time-dependent gray matter changes in the right cerebellum. Our results highlight training-induced balance improvements in PD patients that may be associated with specific patterns of structural brain plasticity. In summary, we provide novel evidence for the capacity of the human brain to undergo learning-related structural plasticity even in a pathophysiological disease state such as in PD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: We present an overview of recent concepts in mechanisms underlying cognitive decline associated with brain aging and neurodegeneration from the perspective of MRI. RECENT FINDINGS: Recent findings challenge the established link between neuroimaging biomarkers of neurodegeneration and age-related or disease-related cognitive decline. Amyloid burden, white matter hyperintensities and local patterns of brain atrophy seem to have differential impact on cognition, particularly on episodic and working memory - the most vulnerable domains in 'normal aging' and Alzheimer's disease. Studies suggesting that imaging biomarkers of neurodegeneration are independent of amyloid-β give rise to new hypothesis regarding the pathological cascade in Alzheimer's disease. Findings in patients with autosomal-dominant Alzheimer's disease confirm the notion of differential temporal trajectory of amyloid deposition and brain atrophy to add another layer of complexity on the basic mechanisms of cognitive aging and neurodegeneration. Finally, the concept of cognitive reserve in 'supernormal aging' is questioned by evidence for the preservation of neurochemical, structural and functional brain integrity in old age rather than recruitment of 'reserves' for maintaining cognitive abilities. SUMMARY: Recent advances in clinical neuroscience, brain imaging and genetics challenge pathophysiological hypothesis of neurodegeneration and cognitive aging dominating the field in the last decade and call for reconsidering the choice of therapeutic window for early intervention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early studies showed that the administration of the anti-inflammatory cytokine interleukin-10 (IL10) protects against permanent middle cerebral artery occlusion (MCAO) in mice. In this study, transgenic mice expressing murine IL10 (IL10T) directed by the major histocompatibility complex Ea promoter were produced and used to explore the effect of chronically increased IL10 levels on MCAO-related molecular mechanisms. IL10 was over-expressed in astrocytes, microglia, and endothelial brain cells in IL10T compared with wild type mice. Four days following MCAO, IL10T mice showed a 40% reduction in infarct size which was associated to significantly reduced levels of active caspase 3 compared with wild type mice. Under basal conditions, anti-inflammatory factors such as nerve growth factor and GSH were up-regulated and the pro-inflammatory cytokine IL1beta was down-regulated in the brain of IL10T animals. In addition, these mice displayed increased basal GSH levels in microglial and endothelial cells as well as a marked increase in manganese superoxide dismutase in endothelial lining blood vessels. Following ischemia, IL10T mice showed a marked reduction in pro-inflammatory cytokines, including tumor necrosis factor-alpha, interferon-gamma, and IL1beta. Our data indicate that constitutive IL10 over-expression is associated with a striking resistance to cerebral ischemia that may be attributed to changes in the basal redox properties of glial/endothelial cells.