348 resultados para ALDOSTERONE BLOCKADE
Resumo:
The epithelial sodium channel (ENaC) in the apical membrane of polarized epithelial cells is the rate-limiting step for Na entry into the cell; in series with the basolateral Na pump, it allows the vectorial transepithelial transport of Na ions. ENaC is expressed in different epithelia like the distal nephron or colon, and the airways epithelium. In the lung ENaC controls the composition and the amount of pulmonary fluid, whereas in the distal nephron ENaC under the control of aldosterone and vasopressin, is essential to adapt the amount of Na+ reabsorbed with the daily sodium intake. Activating mutations of ENaC cause severe disturbances of Na+ homeostasis leading to hypertension in human and in mouse models. Functional expression of ENaC in different cell systems allowed the identification of structural domains of the protein that are essential for channel function and/or modulation of channel activity. Site-directed mutations in specific domains of the channel protein lead to channel hyperactivity or channel loss of function. Knowledge about ENaC structure-function relationships opens new opportunities for development of pharmacological tools for controlling ENaC activity, such as channel activators of potential benefit in the treatment of pulmonary edema, or highly potent ENaC blockers with natriuretic effects.
Resumo:
We herein report an autopsy case involving a 27-year-old Caucasian woman suffering from chronic adrenocortical insufficiency with a background of a polyendocrine disorder. Postmortem biochemistry revealed pathologically decreased aldosterone, cortisol, and dehydroepiandrosterone levels in postmortem serum from femoral blood as well as decreased cortisol and 17-hydroxycorticosteroid in urine. Decreased vitreous sodium and increased 3-beta-hydroxybutyrate and C-reactive protein concentrations were observed. The cause of death was determined to be acute adrenocortical insufficiency. Fasting ketoacidosis was postulated to have precipitated the Addisonian crisis. Traumatic causes of death and third-party involvement were excluded. The case highlights the importance of systematically performing exhaustive postmortem biochemical investigations to formulate appropriate hypothesis regarding the pathophysiological mechanisms involved in the death process.
Resumo:
There are some rationales for developing anticonvulsants for the treatment of substance abuse. The blockade of the AMPA/kainate subtype of glutamate receptor by topiramate may be of particular interest, as preclinical studies of withdrawal from opioids suggest that whilst AMPA-receptor antagonists may not be able to prevent tolerance or dependence from developing, they may ameliorate both physical and emotional consequences of withdrawal. Methods. Ten consecutively admitted patients treated with topiramate were compared in a retrospective naturalistic drug utilization observation study with 10 consecutively admitted patients treated with clonidine and with 10 consecutively admitted patients treated with a carbamazepine/ mianserin combination. Results. In 9 cases of the clonidine group and in 7 carbamazepine/mianserin treated patients the dose had been reduced, whereas this occurred in only 2 topiramate treated patients (p < 0.01). Patients in the topiramate group received less p.r.n. myorelaxant medication than the two other groups, and there was a significant difference between the three groups with regard to p.r.n. analgesics (p < 0.05), topiramate and clonidine treated patients receiving fewer analgesics than the carbamazepine/mianserin group. Conclusions. Compared to clonidine and carbamazepine/mianserin, a detoxification scheme using high initial and then decreasing doses of topiramate appeared to be appropriate for most patients and as associated with less analgesic and myorelaxant comedication, indicating a more promising efficacy at the used doses
Resumo:
After nutrient ingestion there is an increase in energy expenditure that has been referred to as dietary-induced thermogenesis. In the present study we have employed indirect calorimetry to compare the increment in energy expenditure after the ingestion of 75 g of glucose or fructose in 17 healthy volunteers. During the 4 h after glucose ingestion the plasma insulin concentration increased by 33 +/- 4 microU/ml and this was associated with a significant increase in carbohydrate oxidation and decrement in lipid oxidation. Energy expenditure increased by 0.08 +/- 0.01 kcal/min. When fructose was ingested, the plasma insulin concentration increased by only 8 +/- 2 microU/ml vs. glucose. Nonetheless, the increments in carbohydrate oxidation and decrement in lipid oxidation were significantly greater than with glucose. The increment in energy expenditure was also greater with fructose. When the mean increment in plasma insulin concentration after fructose was reproduced using the insulin clamp technique, the increase in carbohydrate oxidation and decrement in lipid oxidation were markedly reduced compared with the fructose-ingestion study; energy expenditure failed to increase above basal levels. To examine the role of the adrenergic nervous system in fructose-induced thermogenesis, fructose ingestion was also performed during beta-adrenergic blockade with propranolol. The increase in energy expenditure during fructose plus propranolol was lower than with fructose ingestion alone. These results indicate that the stimulation of thermogenesis after carbohydrate ingestion is related to an augmentation of cellular metabolism and is not dependent on an increase in the plasma insulin concentration per se.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
It has not been well established whether the mechanisms participating in pH regulation in the anoxic-reoxygenated developing myocardium resemble those operating in the adult. We have specially examined the importance of Na+/H+ exchange (NHE) and HCO3-dependent transports in cardiac activity after changes in extracellular pH (pHo). Spontaneously contracting hearts isolated from 4-day-old chick embryos were submitted to single or repeated anoxia (1 min) followed by reoxygenation (10 min). The chronotropic, dromotropic and inotropic responses of the hearts were determined in standard HCO3- buffer at pHo 7.4 and at pHo 6.5 (hypercapnic acidosis). In distinct experiments, acidotic anoxia preceded reoxygenation at pHo 7.4. NHE was blocked with amiloride derivative HMA (1 micro mol/l) and HCO3-dependent transports were inactivated by replacement of HCO3 or blockade with stilbene derivative DIDS (100 micro mol/l). Anoxia caused transient tachycardia, depressed mechanical function and induced contracture. Reoxygenation temporarily provoked cardiac arrest, atrio-ventricular (AV) block, arrhythmias and depression of contractility. Addition of DIDS or substitution of HCO3 at pHo 7.4 had the same effects as acidosis per se, i.e. shortened contractile activity and increased incidence of arrhythmias during anoxia, prolonged cardioplegia and provoked arrhythmias at reoxygenation. Under anoxia at pHo 6.5/reoxygenation at pHo 7.4, cardioplegia, AV block and arrhythmias were all markedly prolonged. Interestingly, in the latter protocol, DIDS suppressed AV block and arrhythmias during reoxygenation, whereas HMA had no effect. Thus, intracellular pH regulation in the anoxic-reoxygenated embryonic heart appears to depend predominantly on HCO3 availability and transport. Furthermore, pharmacological inhibition of anion transport can protect against reoxygenation-induced dysfunction.
Resumo:
Studies aiming at the elucidation of the genetic basis of rare monogenic forms of hypertension have identified mutations in genes coding for the epithelial sodium channel ENaC, for the mineralocorticoid receptor, or for enzymes crucial for the synthesis of aldosterone. These genetic studies clearly demonstrate the importance of the regulation of Na(+) absorption in the aldosterone-sensitive distal nephron (ASDN), for the maintenance of the extracellular fluid volume and blood pressure. Recent studies aiming at a better understanding of the cellular and molecular basis of ENaC-mediated Na(+) absorption in the distal part of nephron, have essentially focused on the regulation ENaC activity and on the aldosterone-signaling cascade. ENaC is a constitutively open channel, and factors controlling the number of active channels at the cell surface are likely to have profound effects on Na(+) absorption in the ASDN, and in the amount of Na(+) that is excreted in the final urine. A number of membrane-bound proteases, kinases, have recently been identified that increase ENaC activity at the cell surface in heterologous expressions systems. Ubiquitylation is a general process that regulates the stability of a variety of target proteins that include ENaC. Recently, deubiquitylating enzymes have been shown to increase ENaC activity in heterologous expressions systems. These regulatory mechanisms are likely to be nephron specific, since in vivo studies indicate that the adaptation of the renal excretion of Na(+) in response to Na(+) diet occurs predominantly in the early part (the connecting tubule) of the ASDN. An important work is presently done to determine in vivo the physiological relevance of these cellular and molecular mechanisms in regulation of ENaC activity. The contribution of the protease-dependent ENaC regulation in mediating Na(+) absorption in the ASDN is still not clearly understood. The signaling pathway that involves ubiquitylation of ENaC does not seem to be absolutely required for the aldosterone-mediated control of ENaC. These in vivo physiological studies presently constitute a major challenge for our understanding of the regulation of ENaC to maintain the Na(+) balance.
Resumo:
Today two largely new approaches are available for the treatment of clinical hypertension. First, captopril, an orally active angiotensin converting enzyme inhibitor, makes possible chronic blockade of the renin-angiotensin system. This compound, given alone or in combination with a diuretic, normalizes the blood pressure of most hypertensive patients. Unfortunately, because captopril may induce serious adverse effects the use of this inhibitor must be restricted to patients with high blood pressure refractory to conventional antihypertensive drugs. Second, compounds such as verapamil and nifedipine are capable of producing a marked vasodilating effect by inhibiting the entry of calcium into the vascular smooth muscle cells. However, the role of calcium channel blockers in the treatment of hypertensive disease awaits more precise definition.
Resumo:
Aldosterone and corticosterone bind to mineralocorticoid (MR) and glucocorticoid receptors (GR), which, upon ligand binding, are thought to translocate to the cell nucleus to act as transcription factors. Mineralocorticoid selectivity is achieved by the 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) that inactivates 11β-hydroxy glucocorticoids. High expression levels of 11β-HSD2 characterize the aldosterone-sensitive distal nephron (ASDN), which comprises the segment-specific cells of late distal convoluted tubule (DCT2), connecting tubule (CNT), and collecting duct (CD). We used MR- and GR-specific antibodies to study localization and regulation of MR and GR in kidneys of rats with altered plasma aldosterone and corticosterone levels. In control rats, MR and GR were found in cell nuclei of thick ascending limb (TAL), DCT, CNT, CD cells, and intercalated cells (IC). GR was also abundant in cell nuclei and the subapical compartment of proximal tubule (PT) cells. Dietary NaCl loading, which lowers plasma aldosterone, caused a selective removal of GR from cell nuclei of 11β-HSD2-positive ASDN. The nuclear localization of MR was unaffected. Adrenalectomy (ADX) resulted in removal of MR and GR from the cell nuclei of all epithelial cells. Aldosterone replacement rapidly relocated the receptors in the cell nuclei. In ASDN cells, low-dose corticosterone replacement caused nuclear localization of MR, but not of GR. The GR was redistributed to the nucleus only in PT, TAL, early DCT, and IC that express no or very little 11β-HSD2. In ASDN cells, nuclear GR localization was only achieved when corticosterone was replaced at high doses. Thus ligand-induced nuclear translocation of MR and GR are part of MR and GR regulation in the kidney and show remarkable segment- and cell type-specific characteristics. Differential regulation of MR and GR may alter the level of heterodimerization of the receptors and hence may contribute to the complexity of corticosteroid effects on ASDN function.
Resumo:
Two doses of synthetic atrial natriuretic peptide (0.5 and 5.0 micrograms/min) and its vehicle were infused intravenously for 4 hours in eight salt-loaded normal volunteers, and the effect on blood pressure, heart rate, renal hemodynamics, solute excretion, and secretion of vasoactive hormones was studied. The 0.5 micrograms/min infusion did not alter blood pressure or heart rate, whereas the 5.0 micrograms/min infusion significantly reduced the mean pressure by 20/9 mm Hg after 2.5 to 3 hours and increased the heart rate slightly. Inulin clearance was not significantly changed, but the mean p-aminohippurate clearance fell by 13 and 32% with the lower and higher doses, respectively. Urinary excretion of sodium and chloride increased slightly with the lower dose. With the higher dose, a marked increase in urinary excretion of sodium, chloride, and calcium was observed, reaching a peak during the second hour of the infusion. Potassium and phosphate excretion did not change significantly. A brisk increase in urine flow rate and fractional water excretion was seen only during the first hour of the high-dose infusion. Signs and symptoms of hypotension were observed in two subjects. No change in plasma renin activity, angiotensin II, or aldosterone was observed during either infusion, but a marked increase occurred after discontinuation of the high-dose infusion. In conclusion, the 5 micrograms/min infusion induced a transient diuretic effect, delayed maximal natriuretic activity, and a late fall in blood pressure, with no change in inulin clearance but a dose-related decrease in p-aminohippurate clearance. Despite large amounts of sodium excreted and blood pressure reduction, no counterregulatory changes were observed in the renin-angiotensin-aldosterone system or plasma vasopressin levels during the infusion.
Resumo:
Mutations in α, β, or γ subunits of the epithelial sodium channel (ENaC) can downregulate ENaC activity and cause a severe salt-losing syndrome with hyperkalemia and metabolic acidosis, designated pseudohypoaldosteronism type 1 in humans. In contrast, mice with selective inactivation of αENaC in the collecting duct (CD) maintain sodium and potassium balance, suggesting that the late distal convoluted tubule (DCT2) and/or the connecting tubule (CNT) participates in sodium homeostasis. To investigate the relative importance of ENaC-mediated sodium absorption in the CNT, we used Cre-lox technology to generate mice lacking αENaC in the aquaporin 2-expressing CNT and CD. Western blot analysis of microdissected cortical CD (CCD) and CNT revealed absence of αENaC in the CCD and weak αENaC expression in the CNT. These mice exhibited a significantly higher urinary sodium excretion, a lower urine osmolality, and an increased urine volume compared with control mice. Furthermore, serum sodium was lower and potassium levels were higher in the genetically modified mice. With dietary sodium restriction, these mice experienced significant weight loss, increased urinary sodium excretion, and hyperkalemia. Plasma aldosterone levels were significantly elevated under both standard and sodium-restricted diets. In summary, αENaC expression within the CNT/CD is crucial for sodium and potassium homeostasis and causes signs and symptoms of pseudohypoaldosteronism type 1 if missing.
Resumo:
An attractive treatment of cancer consists in inducing tumor-eradicating CD8(+) CTL specific for tumor-associated Ags, such as NY-ESO-1 (ESO), a strongly immunogenic cancer germ line gene-encoded tumor-associated Ag, widely expressed on diverse tumors. To establish optimal priming of ESO-specific CTL and to define critical vaccine variables and mechanisms, we used HLA-A2/DR1 H-2(-/-) transgenic mice and sequential immunization with immunodominant DR1- and A2-restricted ESO peptides. Immunization of mice first with the DR1-restricted ESO(123-137) peptide and subsequently with mature dendritic cells (DCs) presenting this and the A2-restriced ESO(157-165) epitope generated abundant, circulating, high-avidity primary and memory CD8(+) T cells that efficiently killed A2/ESO(157-165)(+) tumor cells. This prime boost regimen was superior to other vaccine regimes and required strong Th1 cell responses, copresentation of MHC class I and MHC class II peptides by the same DC, and resulted in upregulation of sphingosine 1-phosphate receptor 1, and thus egress of freshly primed CD8(+) T cells from the draining lymph nodes into circulation. This well-defined system allowed detailed mechanistic analysis, which revealed that 1) the Th1 cytokines IFN-gamma and IL-2 played key roles in CTL priming, namely by upregulating on naive CD8(+) T cells the chemokine receptor CCR5; 2) the inflammatory chemokines CCL4 (MIP-1beta) and CCL3 (MIP-1alpha) chemoattracted primed CD4(+) T cells to mature DCs and activated, naive CD8(+) T cells to DC-CD4 conjugates, respectively; and 3) blockade of these chemokines or their common receptor CCR5 ablated priming of CD8(+) T cells and upregulation of sphingosine 1-phosphate receptor 1. These findings provide new opportunities for improving T cell cancer vaccines.
Resumo:
Abstract The cardiac sodium channel Nav1.5 plays a key role in cardiac excitability and conduction. Its importance for normal cardiac function has been highlighted by descriptions of numerous mutations of SCN5A (the gene encoding Nav1.5), causing cardiac arrhythmias which can lead to sudden cardiac death. The general aim of my PhD research project has been to investigate the regulation of Nav1.5 along two main axes: (1) We obtained experimental evidence revealing an interaction between Nav1.5 and a multiprotein complex comprising dystrophin. The first part of this study reports the characterization of this interaction. (2) The second part of the study is dedicated to the regulation of the cardiac sodium channel by the mineralocorticoid hormone named aldosterone. (1) Early in this study, we showed that Nav1.5 C-terminus was associated with dystrophin and that this interaction was mediated by syntrophin proteins. We used dystrophin-deficient mdx5cv mice to study the role of this interaction. We reported that dystrophin deficiency led to a reduction of both Nav1.5 protein level and the sodium current (INa). We also found that mdx5cv mice displayed atrial and ventricular conduction defects. Our results also indicated that proteasome inhibitor MG132 treatment of mdx5cv mice rescued Nav1.5 protein level and INa in cardiac tissue. (2) We showed that aldosterone treatment of mice cardiomyocytes led to an increase of the sodium current with no modification of Nav1.5 transcript and protein level. Altogether, these results suggest that the sodium current can be increased by distribution of intracellular pools of protein to the plasma membrane (e.g. upon aldosterone stimulation) and that interaction with dystrophin multiprotein complex is required for the stabilization of the channel at the plasma membrane. Finally, we obtained preliminary results suggesting that the proteasome could regulate Nav1.5 in mdx5cv mice. This study defines regulatory mechanisms of Nav1.5 which could play an important role in cardiac arrhythmia and bring new insight in cardiac conduction alterations observed in patients with dystrophinopathies. Moreover, this work suggests that Brugada syndrome, and some of the cardiac alterations seen in Duchenne patients may be caused by overlapping molecular mechanisms leading to a reduction of the cardiac sodium current.
Resumo:
Abstract The epithelial sodium channel (ENaC) is composed of three homologous subunits α, ß, and γ. This channel is involved in the regulation of sodium balance, which influences the periciliary liquid level in the lung, and blood pressure via the kidney. ENaC expressed in Xenopus laevis oocytes is preferentially and rapidly assembled into heteromeric αßγ complexes. Expression of homomeric α or heteromeric αß and αγ complexes lead to channel expression at the cell surface wíth low activities. Recent studies have demonstrated that α and γ (but not ß) ENaC subunits undergo proteolytic cleavage by endogenous proteases (i.e. furin) correlating with increased channel activity. We therefore assayed the full-length subunits and their cleavage products at the cell surface, as well as in the intracellular pool for all homo- and heteromeric combínations (α, ß, γ, ßγ, αß, αγ, ßγ and αßγ) and measured the corresponding channel activities as amiloride-sensitive sodíum transport (INa). We showed that upon assembly, cleavage of the y ENaC subunit ís responsible for increasing INa. We further demonstrated that in disease states such as cystic fibrosis (CF) where there is disequilibrium in the proteaseprotease inhibitor balance, ENaC is over-activated by the serine protease elastase (NE). We demonstrated that elevated NE concentrations can cleave cell surface expressed γ ENaC (but not α, or ß ENaC), suggesting a causal relationship between γ ENaC cleavage and ENaC activation, taking place at the plasma membrane. In addition, we demonstrated that the serine protease inhibitor (serpin) serpinH1, which is co-expressed with ENaC in the distal nephron is capable of inhibiting the channel by preventing cleavage of the γ ENaC subunit. Aldosterone mediated increases in INa aze known to be inhibted by TGFß. TGFß is also known to increase serpinHl expression. The demonstrated inhibition of γ ENaC cleavage and channel activation by serpinH1 may be responsible for the effect of TGFß on aldosterone stimulation in the distal nephron. In summary, we show that cleavage of the γ subunit, but not the α or ß subunit is linked to channel activation in three seperate contexts. Résumé Le canal épithélial à sodium (ENaC) est constitué de trois sous-unités homologues α, ß, and γ. Ce canal est impliqué dans le maintien de la balance sodique qui influence le niveau du liquide périciliaire du poumon et la pression sanguine via le rein. Dans les ovocytes de Xenopus laevis ENaC est préférentiellement et rapidement exprimé en formant un complexe hétéromérique αßγ. En revanche, l'expression homomérique de α ou hétéromérique des complexes αß et αγ conduit à une expression à la surface cellulaire d'un canal ENaC ne possédant qu'une faible activité. Des études récentes ont mis en évidence que les sous-unités α et γ d'ENaC (mais pas ß) sont coupées par des protéases endogènes (les farines) et que ces clivages augmentent l'activité du canal. Nous avons donc analysé, aussi bien à la surface cellulaire que dans le cytoplasme, les produits des clivages de combinaison homo- et hétéromérique des sous-unités d'ENaC (α, ß, γ, ßγ, αß, αγ, ßγ et αßγ). En parallèle, nous avons étudié l'activité correspondante à ces canaux par la mesure du transport de sodium sensible à l'amiloride (INa). Nous avons montré que lors de l'assemblage des sous-unités d'ENaC, le clivage de γ correspond à l'augmentation de INa. Nous avons également mis en évidence que dans une maladie telle que la fibrose cystique (CF) caractérisée par un déséquilibre de la balance protéase-inhibiteur de protéase, ENaC est suractivé par une sérine protéase nommée élastase (NE). L'augmentation de la concentration de NE clive γ ENaC exprimé à la surface cellulaire (mais pas α, ni ß ENaC) suggérant une causalité entre le clivage d'ENaC et son activation à la membrane plasmique. De plus, nous avons démontré que l'inhibiteur de sérine protéase (serpin) serpinH1, qui est co-exprimé avec ENaC dans le néphron distal, inhibe l'activité du canal en empêchant le clivage de la sous-unité γ ENaC. Il est connu que le INa induit par l'aldostérone peut être inhibé par TGFß. Or TGFß augmente l'expression de serpinH1. L'inhibition du clivage de γ ENaC et de l'activation du canal par la serpinH1 que nous avons mis en évidence pourrait ainsi être responsable de l'effet de TGFß sur la stimulation du courant par l'aldostérone dans le néphron distal. En résumé, nous avons montré que le clivage de la sous-unité γ, mais pas des sous-unités α et ß, est lié à l'activation du canal dans trois contextes distincts. Résumé tout public Le corps humain est composé d'environ 10 000 milliards de cellules et d'approximativement 60% d'eau. Les cellules du corps sont les unités fondamentales de la vie et elles sont dépendantes de certains nutriments et molécules. Ces nutriments et molécules sont dissous dans l'eau qui est présente dans et hors des cellules. Le maintien d'une concentration adéquate - de ces nutriments et de ces molécules dans l'eau à l'intérieur et à l'extérieur des cellules est -..essentiel pour leur survie. L'eau hors des cellules est nommée le fluide extracellulaire et peut être subdivisée en fluide interstitiel, qui se trouve autour des cellules, et en plasma, qui est le fluide des vaisseaux sanguins. Les fluides, les nutriments et les molécules sont constamment échangés entre les cellules, le fluide interstitiel, et le plasma. Le plasma circule dans le système circulatoire afin de distribuer les nutriments et molécules dans tout le corps et afin d'enlever les déchets cellulaires. Le rein joue un rôle essentiel dans la régulation du volume et de la concentration du plasma en éliminant sélectivement les nutriments et les molécules via la formation de l'urine. L'être humain possède deux reins, constitués chacun d'environ 1 million de néphrons. Ces derniers sont responsables de réabsorber et de sécréter sélectivement les nutriments et les molécules. Le canal épithélial à sodium (ENaC) est localisé à la surface cellulaire des néphrons et est responsable de la réabsorption du sodium (Na+). Le Na+ est présent dans quasiment toute la nourriture que nous mangeons et représente, en terme de molécule, 50% du sel de cuisine. Si trop de sodium est consommé, ENaC est inactif, si bien que le Na+ n'est pas réabsorbé et quitte le corps par l'urine. Ce mécanisme permet d'éviter que la concentration plasmatique de Na+ ne devienne trop grande, ce qui résulterait en une augmentation de la pression sanguine. Si trop peu de Na+ est consommé, ENaC réabsorbe le Na+ de l'urine primaire ce qui permet de conserver la concentration de Na+ et de prévenir une diminution de la pression sanguine par une perte de Na+. ENaC est aussi présent dans les cellules des poumons qui sont les organes permettant la respiration. La respiration est aussi essentielle pour la survie des cellules. Les poumons ne doivent pas contenir trop de liquide afin de permettre la respiration, mais en même temps ils ne doivent pas non plus être trop secs. En effet, ceci tuerait les cellules et empêcherait aussi la respiration. ENaC permet de maintenir un niveau d'humidité approprié dans les poumons en absorbant du Na+ ce qui entraîne un mouvement osmotique d'eau. L'absorption de sodium par ENaC ~ est augmentée par les protéases (in vitro et ex vivo). Les protéases sont des molécules qui peuvent couper d'autres molécules à des endroits précis. Nous avons démonté que certaines protéases augmentent l'absorption de Na+ en coupant ENaC à des endroits spécifiques. L'inhibition de ces protéases diminue le transport de Na+ et empêche le clivage d'ENaC. Dans certaines maladies telle que la mucoviscidose, des protéases sont suractivées et augmentent l'activité d'ENaC de manière inappropriée conduisant à une trop forte absorption de Na+ et à un déséquilibre de la muqueuse des poumons. Cette étude est donc particulièrement importante dans le cadre de la recherche thérapeutique de ce genre de maladie.
Resumo:
Activation of the NLRP3 inflammasome by microbial ligands or tissue damage requires intracellular generation of reactive oxygen species (ROS). We present evidence that macrophage secretion of IL1β upon stimulation with ATP, crystals or LPS is mediated by a rapid increase in the activity of xanthine oxidase (XO), the oxidized form of xanthine dehydrogenase, resulting in the formation of uric acid as well as ROS. We show that XO-derived ROS, but not uric acid, is the trigger for IL1β release and that XO blockade results in impaired IL1β and caspase1 secretion. XO is localized to both cytoplasmic and mitochondrial compartments and acts upstream to the PI3K-AKT signalling pathway that results in mitochondrial ROS generation. This pathway represents a mechanism for regulating NLRP3 inflammasome activation that may have therapeutic implications in inflammatory diseases.
Resumo:
Helminth parasites can cause considerable damage when migrating through host tissues, thus making rapid tissue repair imperative to prevent bleeding and bacterial dissemination particularly during enteric infection. However, how protective type 2 responses targeted against these tissue-disruptive multicellular parasites might contribute to homeostatic wound healing in the intestine has remained unclear. Here, we observed that mice lacking antibodies (Aid-/-) or activating Fc receptors (Fcrg-/-) displayed impaired intestinal repair following infection with the murine helminth Heligmosomoides polygyrus bakeri (Hpb), whilst transfer of immune serum could partially restore chemokine production and rescue wound healing in Aid-/- mice. Impaired healing was associated with a reduced expression of CXCR2 ligands (CXCL2/3) by macrophages (MΦ) and myofibroblasts (MF) within intestinal lesions. Whilst antibodies and helminths together triggered CXCL2 production by MΦ in vitro via surface FcR engagement, chemokine secretion by intestinal MF was elicited by helminths directly via Fcrg-chain/dectin2 signaling. Blockade of CXCR2 during Hpb challenge infection reproduced the delayed wound repair observed in helminth infected Aid-/- and Fcrg-/- mice. Finally, conditioned media from human MΦ stimulated with infective larvae of the helminth Ascaris suum together with immune serum, promoted CXCR2-dependent scratch wound closure by human MF in vitro. Collectively our findings suggest that helminths and antibodies instruct a chemokine driven MΦ-MF crosstalk to promote intestinal repair, a capacity that may be harnessed in clinical settings of impaired wound healing.