351 resultados para RAT LUNG


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methylmalonyl-CoA mutase (MCM) and propionyl-CoA carboxylase (PCC) are the key enzymes of the catabolic pathway of propionate metabolism and are mainly expressed in liver, kidney and heart. Deficiency of these enzymes leads to two classical organic acidurias: methylmalonic and propionic aciduria. Patients with these diseases suffer from a whole spectrum of neurological manifestations that are limiting their quality of life. Current treatment does not seem to effectively prevent neurological deterioration and pathophysiological mechanisms are poorly understood. In this article we show evidence for the expression of the catabolic pathway of propionate metabolism in the developing and adult rat CNS. Both, MCM and PCC enzymes are co-expressed in neurons and found in all regions of the CNS. Disease-specific metabolites such as methylmalonate, propionyl-CoA and 2-methylcitrate could thus be formed autonomously in the CNS and contribute to the pathophysiological mechanisms of neurotoxicity. In rat embryos (E15.5 and E18.5), MCM and PCC show a much higher expression level in the entire CNS than in the liver, suggesting a different, but important function of this pathway during brain development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated if changes in hepatic lipid metabolism produced by old age are related to changes in liver peroxisome proliferator-activated receptor alpha (PPARalpha). Our results indicate that 18-month-old rats showed a marked decrease in the expression and activity of liver PPARalpha, as shown by significant reductions in PPARalpha mRNA, protein and binding activity, resulting in a reduction in the relative mRNA levels of PPARalpha target genes, such as liver-carnitine-palmitoyl transferase-I (CPT-I) and mitochondrial medium-chain acyl-CoA dehydrogenase (MCAD). Further, in accordance with a liver PPARalpha deficiency in old rats, treatment of old animals with a therapeutic dose of gemfibrozil (GFB) (3mg/kg per day, 21 days) was ineffective in reducing plasma triglyceride concentrations (TG), despite attaining a 50% reduction in TG when GFB was administered to young animals at the same dose and length of treatment. We hypothesize that the decrease in hepatic PPARalpha can be related to a state of leptin resistance present in old animals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic obstructive pulmonary disease (COPD) is the primary indication for lung transplantation (LTx), but survival benefit is still under debate. We analysed the survival impact of LTx in COPD with a new approach, using the BODE (body mass index, airway obstruction, dyspnoea, exercise capacity) index. We retrospectively reviewed 54 consecutive lung transplants performed for COPD. The pre-transplant BODE score was calculated for each patient and a predicted survival was derived from the survival functions of the original BODE index validation cohort. Predicted and observed post-transplant survival was then compared. In the subgroups with a BODE score >or=7 and <7, a majority of patients (66% and 69%, respectively) lived for longer after LTx than predicted by their individual BODE index. The median survival was significantly improved in the entire cohort and in the subgroup with a BODE score >or=7. 4 yrs after LTx a survival benefit was only apparent in patients with a pre-transplant BODE score of >or=7. In conclusion, while a majority of COPD patients had an individual survival benefit from LTx regardless of their pre-transplant BODE score, a global survival benefit was seen only in patients with more severe disease. This supports the use of the BODE index as a selection criteria for LTx candidates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adenocarcinoma of the lung is the leading cause of cancer death worldwide. Here we report molecular profiling of 230 resected lung adenocarcinomas using messenger RNA, microRNA and DNA sequencing integrated with copy number, methylation and proteomic analyses. High rates of somatic mutation were seen (mean 8.9 mutations per megabase). Eighteen genes were statistically significantly mutated, including RIT1 activating mutations and newly described loss-of-function MGA mutations which are mutually exclusive with focal MYC amplification. EGFR mutations were more frequent in female patients, whereas mutations in RBM10 were more common in males. Aberrations in NF1, MET, ERBB2 and RIT1 occurred in 13% of cases and were enriched in samples otherwise lacking an activated oncogene, suggesting a driver role for these events in certain tumours. DNA and mRNA sequence from the same tumour highlighted splicing alterations driven by somatic genomic changes, including exon 14 skipping in MET mRNA in 4% of cases. MAPK and PI(3)K pathway activity, when measured at the protein level, was explained by known mutations in only a fraction of cases, suggesting additional, unexplained mechanisms of pathway activation. These data establish a foundation for classification and further investigations of lung adenocarcinoma molecular pathogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aggregates of fetal rat brain were maintained in rotating culture for 30-40 days and were analyzed morphologically and biochemically. At 4 days in culture all cells were undifferentiated. At 26 days in vitro over 90% of all cells within the aggregates could be identified as neurons, astrocytes or oligodendrocytes. Myelinated axons and morphologically mature synapses were present at 26 days. Myelination started between 18 and 19 days in culture as determined biochemically. Myelin basic protein sulphatide synthesis and 2′,3′-cyclic nucleotide 3′-phosphohydrolase activity increased with in vitro age. The amount of myelin observed within the aggregates was much lower than observed at the corresponding age in vivo. Neurons and neuronal processes were undergoing severe degeneration in the 40-day aggregates and synaptic contacts were not maintained. There were no normal myelinated axons at 40 days although multilammellar membranes were found intra- and extracellularly. The ganglioside pattern of the aggregates were qualitatively similar to rat whole brain. Quantitatively the GM3ganglioside was elevated in comparison to whole rat brain. Our results indicate that aggregating rat brain cultures provide a useful in vitro system for the biochemical and morphological analysis of myelin formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Manganese (Mn(2+))-enhanced magnetic resonance imaging studies of the neuronal pathways of the hypothalamus showed that information about the regulation of food intake and energy balance circulate through specific hypothalamic nuclei. The dehydration-induced anorexia (DIA) model demonstrated to be appropriate for studying the hypothalamus with Mn(2+)-enhanced magnetic resonance imaging. Manganese is involved in the normal functioning of a variety of physiological processes and is associated with enzymes contributing to neurotransmitter synthesis and metabolism. It also induces psychiatric and motor disturbances. The molecular mechanisms by which Mn(2+) produces alterations of the hypothalamic physiological processes are not well understood. (1)H-magnetic resonance spectroscopy measurements of the rodent hypothalamus are challenging due to the distant location of the hypothalamus resulting in limited measurement sensitivity. The present study proposed to investigate the effects of Mn(2+) on the neurochemical profile of the hypothalamus in normal, DIA, and overnight fasted female rats at 14.1 T. Results provide evidence that γ-aminobutyric acid has an essential role in the maintenance of energy homeostasis in the hypothalamus but is not condition specific. On the contrary, glutamine, glutamate, and taurine appear to respond more accurately to Mn(2+) exposure. An increase in glutamine levels could also be a characteristic response of the hypothalamus to DIA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The immunogenicity of influenza vaccine is suboptimal in lung transplant recipients. Use of a booster dose and vaccine delivery by the intradermal rather than intramuscular route may improve response. We prospectively evaluated the immunogenicity and safety of a 2-dose boosting strategy of influenza vaccine. Sixty lung transplant recipients received a standard intramuscular injection of the 2006-2007 inactivated influenza vaccine, followed 4 weeks later by an intradermal booster of the same vaccine. Immunogenicity was assessed by measurement of geometric mean titer of antibodies after both the intramuscular injection and the intradermal booster. Vaccine response was defined as 4-fold or higher increase of antibody titers to at least one vaccine antigen. Thirty-eight out of 60 patients (63%) had a response after intramuscular vaccination. Geometric mean titers increased for all three vaccine antigens following the first dose (p &lt; 0.001). However, no significant increases in titer were observed after the booster dose for all three antigens. Among nonresponders, 3/22 (13.6%) additional patients responded after the intradermal booster (p = 0.14). The use of basiliximab was associated with a positive response (p = 0.024). After a single standard dose of influenza vaccine, a booster dose given by intradermal injection did not significantly improve vaccine immunogenicity in lung transplant recipients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aggregate cultures of mixed glial cells, as well as of enriched astrocytes and oligodendrocytes were prepared, and maintained in serum-free medium for up to 25 days. Biochemical measurements of both neuron-specific and glia-specific enzyme activities showed that these three types of aggregate cultures were virtually devoid of neurons. Astrocyte-enriched cultures were greater than 95% pure, with oligodendrocytes as the only apparent contaminant, whereas oligodendrocyte-enriched cultures still contained a considerable proportion of astrocytes. In all these neuron-free aggregate cultures both astrocytes and oligodendrocytes attained a high degree of maturation. These findings were confirmed by morphological examinations, and by immunofluorescence studies. Furthermore, ultrastructural as well as immunocytochemical investigations using antibodies to myelin basic protein revealed that all three types of glial cell aggregate cultures contained myelin membranes, indicating that the presence of axons is not a prerequisite for the formation of myelin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

N. Boillat Blanco, R. Kuonen, C. Bellini, O. Manuel, C. Estrade, J. Mazza-Stalder, J.D. Aubert, R. Sahli, P. Meylan. Chronic norovirus gastroenteritis in a double hematopoietic stem cell and lung transplant recipient. Transpl Infect Dis 2011: 13: 213-215. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy metabolism supports both inhibitory and excitatory neurotransmission processes. This study investigated the specific contribution of astrocytic metabolism to γ-aminobutyric acid (GABA) synthesis and inhibitory GABAergic neurotransmission that remained to be ilucidated in vivo. Therefore, we measured (13) C incorporation into brain metabolites by dynamic (13) C nuclear magnetic resonance spectroscopy at 14.1 T in rats under α-chloralose anaesthesia during infusion of [1,6-(13) C]glucose. The enhanced sensitivity at 14.1 T allowed to quantify incorporation of (13) C into the three aliphatic carbons of GABA non-invasively. Metabolic fluxes were determined with a mathematical model of brain metabolism comprising glial, glutamatergic and GABAergic compartments. GABA synthesis rate was 0.11 ± 0.01 μmol/g/min. GABA-glutamine cycle was 0.053 ± 0.003 μmol/g/min and accounted for 22 ± 1% of total neurotransmitter cycling between neurons and glia. Cerebral glucose oxidation was 0.47 ± 0.02 μmol/g/min, of which 35 ± 1% and 7 ± 1% was diverted to the glutamatergic and GABAergic tricarboxylic acid cycles, respectively. The remaining fraction of glucose oxidation was in glia, where 12 ± 1% of the TCA cycle flux was dedicated to oxidation of GABA. 16 ± 2% of glutamine synthesis was provided to GABAergic neurons. We conclude that substantial metabolic activity occurs in GABAergic neurons and that glial metabolism supports both glutamatergic and GABAergic neurons in the living rat brain. We performed (13) C NMR spectroscopy in vivo at high magnetic field (14.1 T) upon administration of [1,6-(13) C]glucose. This allowed to measure (13) C incorporation into the three aliphatic carbons of GABA in the rat brain, in addition to those of glutamate, glutamine and aspartate. These data were then modelled to determine fluxes of energy metabolism in GABAergic and glutamatergic neurons and glial cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucose exerts inverse effects upon the secretory function of islet alpha- and beta-cells, suppressing glucagon release and increasing insulin release. This diverse action may result from differences in glucose transport and metabolism between the two cell types. The present study compares glucose transport in rat alpha- and beta-cells. beta-Cells transcribed GLUT2 and, to a lesser extent, GLUT 1; alpha-cells contained GLUT1 but no GLUT2 mRNA. No other GLUT-like sequences were found among cDNAs from alpha- or beta-cells. Both cell types expressed 43-kDa GLUT1 protein which was enhanced by culture. The 62-kDa beta-cell GLUT2 protein was converted to a 58-kDa protein after trypsin treatment of the cells without detectable consequences upon glucose transport kinetics. In beta-cells, the rates of glucose transport were 10-fold higher than in alpha-cells. In both cell types, glucose uptake exceeded the rates of glucose utilization by a factor of 10 or more. Glycolytic flux, measured as D-[5(3)H]glucose utilization, was comparable in alpha- and beta-cells between 1 and 10 mmol/liter substrate. In conclusion, differences in glucose transporter gene expression between alpha- and beta-cells can be correlated with differences in glucose transport kinetics but not with different glucose utilization rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Xenobiotic exposure is a risk factor in the etiology of neurodegenerative disease. It was recently hypothesized that restricted exposure during brain development could predispose for a neurodegenerative disease later in life. As neuroinflammation contributes to progressive neurodegeneration, it is suspected that neurodevelopmental xenobiotic exposure could elicit a neuroinflammatory process, which over time may assume a detrimental character. We investigated the neurotoxic effects of paraquat (PQ) in three-dimensional whole rat brain cell cultures, exposed during an early differentiation stage, comparing immediate effects-directly post exposure-with long-term effects, 20 days after interrupted PQ-administration. Adverse effects and neuroinflammatory responses were assessed by measuring changes in gene- and protein-expression as well as by determining cell morphology changes. Differentiating neural cultures were highly susceptible to PQ and showed neuronal damage and strong astrogliosis. After the 20-day washout period, neurons partially recovered, whereas astrogliosis persisted, and was accompanied by microglial activation of a neurodegenerative phenotype. Our data shows that immediate and long-term effects of subchronic PQ-exposure differ. Also, PQ-exposure during this window of extensive neuronal differentiation led to a delayed microglial activation, of a character that could promote further pro-inflammatory signals that enable prolonged inflammation, thereby fueling further neurodegeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sodium transport via epithelial sodium channels (ENaC) expressed in alveolar epithelial cells (AEC) provides the driving force for removal of fluid from the alveolar space. The membrane-bound channel-activating protease 1 (CAP1/Prss8) activates ENaC in vitro in various expression systems. To study the role of CAP1/Prss8 in alveolar sodium transport and lung fluid balance in vivo, we generated mice lacking CAP1/Prss8 in the alveolar epithelium using conditional Cre-loxP-mediated recombination. Deficiency of CAP1/Prss8 in AEC induced in vitro a 40% decrease in ENaC-mediated sodium currents. Sodium-driven alveolar fluid clearance (AFC) was reduced in CAP1/Prss8-deficient mice, due to a 48% decrease in amiloride-sensitive clearance, and was less sensitive to beta(2)-agonist treatment. Intra-alveolar treatment with neutrophil elastase, a soluble serine protease activating ENaC at the cell surface, fully restored basal AFC and the stimulation by beta(2)-agonists. Finally, acute volume-overload increased alveolar lining fluid volume in CAP1/Prss8-deficient mice. This study reveals that CAP1 plays a crucial role in the regulation of ENaC-mediated alveolar sodium and water transport and in mouse lung fluid balance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report successful bilateral lung transplantation for end-stage suppurative lung disease after a previous right-sided pneumonectomy performed for a destroyed lung. Our results demonstrate the feasibility of the procedure even in the context of mechanical ventilation and extracorporeal artificial oxygenation. Posttransplantation follow-up revealed excellent gas exchanges, no airway complications, and well-functioning grafts with right-sided ventilation and perfusion of 37% and 22%, respectively.