329 resultados para Prostate-specific membrane antigen
Resumo:
According to recent results of a sub-group of 20,000 patients from the ERSPC study, prostate cancer screening significantly increases disease specific survival for men with a life expectancy of 15 years. However presently, only 20% of prostate biopsies lead to the diagnosis of cancer. This low yield may be increased by using new tools on their way to validation, such as the blood and urinary markers p2-PSA and PCA3, so as MRI and tridimensional computerized echography. Finally, the tumours detected must be managed with subtlety, since a third of them are not overtly aggressive clinically. Hence, a significant proportion of such tumours may not need immediate curative intent treatment, and can be followed up in an active surveillance protocol.
Resumo:
Screening for Chlamydia trachomatis-specific antibodies is valuable in investigating recurrent miscarriage, tubal infertility and extrauterine pregnancy. We compared here the performance of immunofluorescence (IF) to four other commercial tests in detecting IgG antibodies directed against C. trachomatis: two enzyme-linked immunosorbent assays (ELISAs) using the major outer membrane protein (MOMP) as the antigen, commercialised respectively by Medac and R-Biopharm (RB), one ELISA using the chlamydial heat shock protein 60 (cHSP60) as the antigen (Medac), as well as a new automated epifluorescence immunoassay (InoDiag). A total of 405 patients with (n = 251) and without (n = 154) miscarriages were tested by all five tests. The prevalence of C. trachomatis-specific IgG antibodies as determined by the IF, cHSP60-Medac, MOMP-Medac, MOMP-RB and InoDiag was 14.3, 23.2, 14.3, 11.9 and 26.2%, respectively. InoDiag exhibited the highest sensitivity, whereas MOMP-RB showed the best specificity. Cross-reactivity was observed with C. pneumoniae using IF, MOMP-RB and InoDiag, and Parachlamydia acanthamoebae using the cHSP60 ELISA test. No cross-reactivity was observed between C. trachomatis and the other Chlamydiales (Neochlamydia hartmannellae, Waddlia chondrophila and Simkania negevensis). Given its high sensitivity, the new automated epifluorescence immunoassay from InoDiag represents an interesting alternative. The MOMP-based ELISA of R-Biopharm should be preferred for large serological studies, given the high throughput of ELISA and its excellent specificity.
Resumo:
BACKGROUND: Cytomegalovirus (CMV) disease remains an important problem in solid-organ transplant recipients, with the greatest risk among donor CMV-seropositive, recipient-seronegative (D(+)/R(-)) patients. CMV-specific cell-mediated immunity may be able to predict which patients will develop CMV disease. METHODS: We prospectively included D(+)/R(-) patients who received antiviral prophylaxis. We used the Quantiferon-CMV assay to measure interferon-γ levels following in vitro stimulation with CMV antigens. The test was performed at the end of prophylaxis and 1 and 2 months later. The primary outcome was the incidence of CMV disease at 12 months after transplant. We calculated positive and negative predictive values of the assay for protection from CMV disease. RESULTS: Overall, 28 of 127 (22%) patients developed CMV disease. Of 124 evaluable patients, 31 (25%) had a positive result, 81 (65.3%) had a negative result, and 12 (9.7%) had an indeterminate result (negative mitogen and CMV antigen) with the Quantiferon-CMV assay. At 12 months, patients with a positive result had a subsequent lower incidence of CMV disease than patients with a negative and an indeterminate result (6.4% vs 22.2% vs 58.3%, respectively; P < .001). Positive and negative predictive values of the assay for protection from CMV disease were 0.90 (95% confidence interval [CI], .74-.98) and 0.27 (95% CI, .18-.37), respectively. CONCLUSIONS: This assay may be useful to predict if patients are at low, intermediate, or high risk for the development of subsequent CMV disease after prophylaxis. CLINICAL TRIALS REGISTRATION: NCT00817908.
Resumo:
Protective immunity to Mycobacterium tuberculosis (Mtb) is commonly ascribed to a Th1 profile; however, the involvement of Th17 cells remains to be clarified. Here, we characterized Mtb-specific CD4(+) T cells in blood and bronchoalveolar lavages (BALs) from untreated subjects with either active tuberculosis disease (TB) or latent Mtb infection (LTBI), considered as prototypic models of uncontrolled or controlled infection, respectively. The production of IL-17A, IFN-γ, TNF-α, and IL-2 by Mtb-specific CD4(+) T cells was assessed both directly ex vivo and following in vitro antigen-specific T-cell expansion. Unlike for extracellular bacteria, Mtb-specific CD4(+) T-cell responses lacked immediate ex vivo IL-17A effector function in both LTBI and TB individuals. Furthermore, Mtb-specific Th17 cells were absent in BALs, while extracellular bacteria-specific Th17 cells were identified in gut biopsies of healthy individuals. Interestingly, only Mtb-specific CD4(+) T cells from 50% of LTBI but not from TB subjects acquired the ability to produce IL-17A following Mtb-specific T-cell expansion. Finally, IL-17A acquisition by Mtb-specific CD4(+) T cells correlated with the coexpression of CXCR3 and CCR6, currently associated to Th1 or Th17 profiles, respectively. Our data demonstrate that Mtb-specific Th17 cells are selectively undetectable in peripheral blood and BALs from TB patients.
Resumo:
The T3 complex is known to be expressed on the cell surface of mature T cells together with either the alpha-beta heterodimeric T cell receptor (TCR) or the TCR gamma protein. In a number of immature T cell malignancies, however, T3 has been described exclusively in the cytoplasm. We have investigated five such T cell lines with cytoplasmic T3 and could demonstrate by biosynthetic labeling the presence of the alpha and beta chains of the TCR in the cytoplasm of two of them, CEM and Ichikawa. No surface TCR alpha-beta protein could be detected by staining with the WT31 antibody. These observations, therefore, argue against the concept that expression of the TCR alpha chain controls the surface expression of the T3/TCR complex. Interestingly, phorbol 12-myristate 13-acetate (PMA) induced cell surface expression of T3 protein in these two cell lines only. Moreover, on surface-iodinated CEM cells no association of T3 and TCR molecules could be demonstrated after treatment with PMA, and expression of TCR alpha and beta chains was limited to the cytoplasm. In Ichikawa cells, however, PMA induced surface expression of a mature T3/TCR complex. Our findings indicate that separate regulatory mechanisms may exist for the surface expression of the T3 proteins and for the assembly of the T3/TCR complex.
Resumo:
In an attempt to improve tumor targeting and tumor retention time of monoclonal antibodies (MAbs), we prepared biparatopic antibodies (BpAbs) having the capability of binding 2 different non-overlapping epitopes on the same target antigen molecule, namely, the carcinoembryonic antigen (CEA). Six BpAbs were constructed by coupling 2 different Fab' fragments from 4 different specific anti-CEA MAbs recognizing 4 CEA epitopes (Gold 1-4). Demonstration of the double paratopic binding of these antibodies for CEA was confirmed in vitro by inhibition radioimmunoassay and cross-inhibition analysis by surface plasmon resonance (SPR; BIACORE) technology. Using the latter technique, the affinity constants for CEA immobilized onto the sensor chip were found to range from 0.37 to 1.54 x 10(9) M(-1) for the 4 parental F(ab')2 fragments and from 1.88 to 10.14 x 10(9) M(-1) for the BpAbs, demonstrating the advantage of biparatopic binding over conventional F(ab')2 binding. The Ka improvement was particularly high for BpAb F6/35A7 and BpAb F6/B17 with a 9.5- and 8.1-fold increase, respectively, as compared with the parental F(ab')2. In vivo, the 6 BpAbs were compared with their 2 respective parental F(ab')2 by injection of 131I-BpAb/125I-F(ab')2 parental fragments into nude mice xenografted with the human colon carcinoma T380. Dissection 72 hr post-injection demonstrated that BpAb B17/CE25 and BpAb F6/B17 gave higher tumor uptake than that of their parental F(ab')2. This finding is particularly interesting for BpAb F6/B17, which compared favorably with the F6 F(ab')2, one of the best parental F(ab')2 fragments used in our study.
Resumo:
Immunotherapy of cancer is often performed with altered "analog" peptide Ags optimized for HLA class I binding, resulting in enhanced immunogenicity, but the induced T cell responses require further evaluation. Recently, we demonstrated fine specificity differences and enhanced recognition of naturally presented Ag by T cells after vaccination with natural Melan-A/MART-1 peptide, as compared with analog peptide. In this study, we compared the TCR primary structures of 1489 HLA-A*0201/Melan-A26-35-specific CD8 T cells derived from both cohorts of patients. Although a strong preference for TRAV12-2 segment usage was present in nearly all patients, usage of particular TRAJ gene segments and CDR3 composition differed slightly after vaccination with natural vs analog peptide. Moreover, TCR β-chain repertoires were broader after natural than analog peptide vaccination. In all patients, we observed a marked conservation of the CDR3β amino acid composition with recurrent sequences centered on a glycyl-leucyl/valyl/alanyl-glycyl motif. In contrast to viral-specific TCR repertoires, such "public" motifs were primarily expressed by nondominant T cell clonotypes, which contrasted with "private" CDR3β signatures frequently found in T cell clonotypes that dominated repertoires of individual patients. Interestingly, no differences in functional avidity were observed between public and private T cell clonotypes. Collectively, our data indicate that T cell repertoires generated against natural or analog Melan-A peptide exhibited slightly distinct but otherwise overlapping and structurally conserved TCR features, suggesting that the differences in binding affinity/avidity of TCRs toward pMHC observed in the two cohorts of patients are caused by subtle structural TCR variations.
Resumo:
GLUT8 is a high-affinity glucose transporter present mostly in testes and a subset of brain neurons. At the cellular level, it is found in a poorly defined intracellular compartment in which it is retained by an N-terminal dileucine motif. Here we assessed GLUT8 colocalization with markers for different cellular compartments and searched for signals, which could trigger its cell surface expression. We showed that when expressed in PC12 cells, GLUT8 was located in a perinuclear compartment in which it showed partial colocalization with markers for the endoplasmic reticulum but not with markers for the trans-Golgi network, early endosomes, lysosomes, and synaptic-like vesicles. To evaluate its presence at the plasma membrane, we generated a recombinant adenovirus for the expression of GLUT8 containing an extracellular myc epitope. Cell surface expression was evaluated by immunofluorescence microscopy of transduced PC12 cells or primary hippocampal neurons exposed to different stimuli. Those included substances inducing depolarization, activation of protein kinase A and C, activation or inhibition of tyrosine kinase-linked signaling pathways, glucose deprivation, AMP-activated protein kinase stimulation, and osmotic shock. None of these stimuli-induced GLUT8 cell surface translocation. Furthermore, when GLUT8myc was cotransduced with a dominant-negative form of dynamin or GLUT8myc-expressing PC-12 cells or neurons were incubated with an anti-myc antibody, no evidence for constitutive recycling of the transporter through the cell surface could be obtained. Thus, in cells normally expressing it, GLUT8 was associated with a specific intracellular compartment in which it may play an as-yet-uncharacterized role.
Resumo:
AbstractPlants continuously grow during their complete life span and understanding the mechanisms that qualitatively regulate their traits remains a challenging topic in biology. The hormone auxin has been identified as a crucial molecule for shaping plant growth, as it has a role in most developmental processes. In the root, the directional, so-called polar transport of auxin generates a peak of concentration that specifies and maintains the stem cell niche and a subsequent gradient of decreasing concentration that also regulates cell proliferation and differentiation. For these reasons, auxin is considered the main morphogen of the root, as it is fundamental for its organization and maintenance. Recently, in Arabidopsis thaliana, a natural variation screen allowed the discovery of BREVIS RADIX (BRX) gene as a limiting factor for auxin responsive gene expression and thus for root growth.In this study, we discovered that BRX is a direct target of auxin that positively feeds back on auxin signaling, as a transcriptional co-regulator, through interaction with the Auxin Response Factor (ARF) MONOPTEROS (MP), modulating the auxin gene response magnitude during the transition between division and differentiation in the root meristem. Moreover, we provide evidence that BRX is activated at the plasma membrane level as an associated protein before moving into the nucleus to modulate cellular growth.To investigate the discrepancy between the auxin concentration and the expression pattern of its downstream targets, we combined experimental and computational approaches. Expression profiles deviating from the auxin gradient could only be modeled after intersection of auxin activity with the observed differential endocytosis pattern and with positive auto- regulatory feedback through plasma- membrane-to-nucleus transfer of BRX. Because BRX is required for expression of certain auxin response factor targets, our data suggest a cell-type-specific endocytosis-dependent input into transcriptional auxin perception. This input sustains expression of a subset of auxin-responsive genes across the root meristem's division and transition zones and is essential for meristem growth. Thus, the endocytosis pattern provides specific positional information to modulate auxin response. RésuméLes plantes croissent continuellement tout au long de leur cycle de vie. Comprendre et expliquer les mécanismes impliqués dans ce phénomène reste à l'heure actuelle, un défi. L'hormone auxine a été identifiée comme une molécule essentielle à la régulation de la croissance des plantes, car impliquée dans la plupart des processus développementaux. Dans la racine, le transport polaire de l'auxine, par la génération d'un pic de concentration, spécifie et maintient la niche de cellules souches, et par la génération d'un gradient de concentration, contrôle la prolifération et la différentiation cellulaire. Puisque l'auxine est essentielle pour l'organisation et la maintenance du système racinaire, il est considéré comme son principal morphogène. Récemment, dans la plante modèle, Arabidopsis thalinana, un criblage des variations génétique a permis d'identifier le gène Brevis radix (BRX) comme facteur limitant l'expression des gènes de réponse à l'auxine et par là même, la croissance de la racine.Dans ce travail, nous avons découvert que BRX est une cible direct de l'auxine qui rétroactive positivement le signalement de l'hormone, agissant ainsi comme un régulateur transcriptionnel à travers l'interaction avec la protéine Monopteros (MP) de la famille des facteurs de réponse à l'auxine (Auxin Responsive Factor, ARF), et modulant ainsi la magnitude de la réponse des gènes reliés à l'auxine durant la division et la différentiation cellulaire dans le méristème de la racine. De plus, nous fournissons des preuves que BRX est activées au niveau de la membrane plasmique, tel une protéine associée se déplaçant à l'intérieur du noyau et modulant la croissance cellulaire.Pour mener à bien l'investigation des divergences entre la concentration de l'auxine et les schémas d'expression de ses propres gènes cibles, nous avons combiné les approches expérimentales et computationnelles. Les profiles d'expressions déviant du gradient d'auxine pourraient seulement être modéliser après intersection de l'activité de l'auxine avec les schémas différentiels d'endocytose observés et les boucles de rétroaction positives et autorégulatrices par le transfert de BRX de la membrane plasmique au noyau. Puisque BRX est requis pour l'expression de certains gènes cibles des facteurs de réponse à l'auxine, nos données suggèrent une contribution dépendante d'une endocytose spécifique au type de cellule dans la perception transcriptionnelle à l'auxine Cette contribution soutient l'expression d'un sous-set de gène de réponse à l'auxine dans la division du méristème racinaire et la zone de transition, et par conséquent, est essentielle pour la croissance méristematique. Ainsi, le schéma d'endocytose fournit des informations positionnelles spécifiques à la modulation de la réponse à l'auxine.
Resumo:
The kinetics of binding of a glycolipid-anchored protein (the promastigote surface protease, PSP) to planar lecithin bilayers is studied by an integrated optics technique, in which the bilayer membrane is supported on an optical wave guide and the phase velocities of guided light modes in the wave guide are measured. From these velocities, the optical parameters of the membrane and PSP layers deposited on the waveguide are determined, yielding in particular the mass of PSP bound to the membrane, which is followed in real time. From a comparison of the binding rates of PSP and PSP from which the lipid moiety has been removed, it is shown that the lipid moiety plays a key role in anchoring the protein to the membrane. Specific and nonspecific binding of antibodies to membrane-anchored PSP is also investigated. As little as a fifth of a monolayer of PSP is sufficient to suppress the appreciable nonspecific binding of antibodies to the membrane.
Resumo:
To defend the host from malignancies, the immune system can spontaneously raise CD8(+) T-cell responses against tumor antigens. Investigating the functional state of tumor-reactive cytolytic T cells in cancer patients is a key step for understanding the role of these cells in tumor immunosurveillance and for evaluating the potential of immunotherapeutic approaches of vaccination against cancer. In this study we identified a subset of circulating tumor-reactive CD8(+) T lymphocytes, which specifically secreted IFN-gamma after exposition to autologous tumor cell lines in stage IV metastatic melanoma patients. Additional phenotypic characterization using multicolor flow cytometry revealed that a significant fraction of these cells were CD45RA(+)CCR7(-), a phenotype that has been proposed recently to characterize cytolytic effectors potentially able to home into inflamed tissues. In the case of an HLA-A2-expressing patient, the antigen specificity of this population was identified by using HLA-A2/peptide multimers incorporating a tyrosinase-derived peptide. Consistently with their phenotypic characteristics, A2/tyrosinase peptide multimer(+) CD8(+) T cells, isolated by cell sorting, were directly lytic ex vivo and able to specifically recognize tyrosinase-expressing tumor cells. Overall, these results provide the first evidence that a proportion of melanoma patients have circulating tumor-reactive T cells, which are lytic effectors cells.
Resumo:
The cancer-testis antigen NY-ESO-1 has been targeted as a tumor-associated antigen by immunotherapeutical strategies, such as cancer vaccines. The prerequisite for a T-cell-based therapy is the induction of T cells capable of recognizing the NY-ESO-1-expressing tumor cells. In this study, we generated human T lymphocytes directed against the immunodominant NY-ESO-1(157-165) epitope known to be naturally presented with HLA-A*0201. We succeeded to isolate autorestricted and allorestricted T lymphocytes with low, intermediate or high avidity TCRs against the NY-ESO-1 peptide. The avidity of the established CTL populations correlated with their capacity of lysing HLA-A2-positive, NY-ESO-1-expressing tumor cell lines derived from different origins, e.g. melanoma and myeloma. The allorestricted NY-ESO-1-specific T lymphocytes displayed TCRs with the highest avidity and best anti-tumor recognition activity. TCRs derived from allorestricted, NY-ESO-1-specific T cells may be useful reagents for redirecting primary T cells by TCR gene transfer and, therefore, may facilitate the development of adoptive transfer regimens based on TCR-transduced T cells for the treatment of NY-ESO-1-expressing hematological malignancies and solid tumors.
Resumo:
In common with many other plasma membrane glycoproteins of eukaryotic origin, the promastigote surface protease (PSP) of the protozoan parasite Leishmania contains a glycosyl-phosphatidylinositol (GPI) membrane anchor. The GPI anchor of Leishmania major PSP was purified following proteolysis of the PSP and analyzed by two-dimensional 1H-1H NMR, compositional and methylation linkage analyses, chemical and enzymatic modifications, and amino acid sequencing. From these results, the structure of the GPI-containing peptide was found to be Asp-Gly-Gly-Asn-ethanolamine-PO4-6Man alpha 1-6Man alpha 1-4GlcN alpha 1-6myo-inositol-1-PO4-(1-alkyl-2-acyl-glycerol). The glycan structure is identical to the conserved glycan core regions of the GPI anchor of Trypanosoma brucei variant surface glycoprotein and rat brain Thy-1 antigen, supporting the notion that this portion of GPIs are highly conserved. The phosphatidylinositol moiety of the PSP anchor is unusual, containing a fully saturated, unbranched 1-O-alkyl chain (mainly C24:0) and a mixture of fully saturated unbranched 2-O-acyl chains (C12:0, C14:0, C16:0, and C18:0). This lipid composition differs significantly from those of the GPIs of T. brucei variant surface glycoprotein and mammalian erythrocyte acetylcholinesterase but is similar to that of a family of glycosylated phosphoinositides found uniquely in Leishmania.
Resumo:
Expression of tissue-specific homing molecules directs antigen-experienced T cells to particular peripheral tissues. In studies using soluble antigens that focused on skin and gut, antigen-presenting cells (APCs) within regional lymphoid tissues were proposed to be responsible for imprinting homing phenotypes. Whether this occurs in other sites and after physiologic antigen processing and presentation is unknown. We define in vivo imprinting of distinct homing phenotypes on monospecific T cells responding to antigens expressed by tumors in intracerebral, subcutaneous, and intraperitoneal sites with efficient brain-tropism of CD8 T cells crossprimed in the cervical lymph nodes (LNs). Multiple imprinting programs could occur simultaneously in the same LN when tumors were present in more than one site. Thus, the identity of the LN is not paramount in determining the homing phenotype; this critical functional parameter is dictated upstream at the site of antigen capture by crosspresenting APCs.
Resumo:
NK cell self-tolerance is maintained by inhibitory receptors specific for MHC class I molecules. Inhibitory NK receptors are also expressed on memory CD8 T cells but their biological relevance on T cells is unclear. In this study, we describe the expression of the Ly49A receptor on a subset of autoreactive T cells which persist in mice double-transgenic for the lymphocytic choriomeningitis virus-derived peptide gp33 and a TCRalphabeta specific for the gp33. No Ly49A-expressing cells are found in TCRalphabeta single-transgenic mice, indicating that the presence of the autoantigen is required for Ly49A induction. Direct evidence for an Ag-specific initiation of Ly49A expression has been obtained in vitro after stimulation of autoreactive TCRalphabeta T cells with the cognate self-Ag. This expression of Ly49A substantially reduces Ag-specific activation of autoreactive T cells. These findings thus suggest that autoantigen-specific induction of inhibitory NK cell receptors on T cells may contribute to peripheral self-tolerance.