333 resultados para Heart Aneurysm
Resumo:
The key information processing units within gene regulatory networks are enhancers. Enhancer activity is associated with the production of tissue-specific noncoding RNAs, yet the existence of such transcripts during cardiac development has not been established. Using an integrated genomic approach, we demonstrate that fetal cardiac enhancers generate long noncoding RNAs (lncRNAs) during cardiac differentiation and morphogenesis. Enhancer expression correlates with the emergence of active enhancer chromatin states, the initiation of RNA polymerase II at enhancer loci and expression of target genes. Orthologous human sequences are also transcribed in fetal human hearts and cardiac progenitor cells. Through a systematic bioinformatic analysis, we identified and characterized, for the first time, a catalog of lncRNAs that are expressed during embryonic stem cell differentiation into cardiomyocytes and associated with active cardiac enhancer sequences. RNA-sequencing demonstrates that many of these transcripts are polyadenylated, multi-exonic long noncoding RNAs. Moreover, knockdown of two enhancer-associated lncRNAs resulted in the specific downregulation of their predicted target genes. Interestingly, the reactivation of the fetal gene program, a hallmark of the stress response in the adult heart, is accompanied by increased expression of fetal cardiac enhancer transcripts. Altogether, these findings demonstrate that the activity of cardiac enhancers and expression of their target genes are associated with the production of enhancer-derived lncRNAs.
Resumo:
The identification and characterization of long noncoding RNA in a variety of tissues represent major achievements that contribute to our understanding of the molecular mechanisms controlling gene expression. In particular, long noncoding RNA play crucial roles in the epigenetic regulation of the adaptive response to environmental cues via their capacity to target chromatin modifiers to specific locus. In addition, these transcripts have been implicated in controlling splicing, translation and degradation of messenger RNA. Long noncoding RNA have also been shown to act as decoy molecules for microRNA. In the heart, a few long noncoding RNA have been demonstrated to regulate cardiac commitment and differentiation during development. Furthermore, recent findings suggest their involvement as regulators of the pathophysiological response to injury in the adult heart. Their high cellular specificity makes them attractive target molecules for innovative therapies and ideal biomarkers.
Resumo:
Grâce à l'amélioration de la chirurgie cardiaque, les enfants avec une malformation cardiaque congénitale atteignent actuellement en grande majorité l'âge adulte avec une bonne qualité de vie. Un suivi cardiaque régulier est toutefois recommandé. La période de l'adolescence coïncide souvent avec la survenue de complications à moyen et long termes et la nécessité d'une reprise chirurgicale ou par cathétérisme interventionnel, en particulier chez les patients avec cardiopathie complexe. Par conséquent, il est primordial de débuter le processus de transition assez tôt et de la poursuivre jusqu'à l'âge adulte. Nous avons élaboré un programme de transition formel, adapté aux patients avec cardiopathie congénitale. With the improvement of congenital heart surgery, most children with congenital heart disease will survive into adulthood with a good quality of life. Regular cardiac follow-up is recommended for all patients. The adolescent period coincides often with medium and long term consequences and complications and repeat surgery or catheter interventions might be needed. It is therefore of prime importance to begin the transition process early and to pursue it well into adulthood. We have elaborated a formal transition program adapted to youngsters with congenital heart disease.
Resumo:
This article provides expert opinion on the use of cardiovascular magnetic resonance (CMR) in young patients with congenital heart disease (CHD) and in specific clinical situations. As peculiar challenges apply to imaging children, paediatric aspects are repeatedly discussed. The first section of the paper addresses settings and techniques, including the basic sequences used in paediatric CMR, safety, and sedation. In the second section, the indication, application, and clinical relevance of CMR in the most frequent CHD are discussed in detail. In the current era of multimodality imaging, the strengths of CMR are compared with other imaging modalities. At the end of each chapter, a brief summary with expert consensus key points is provided. The recommendations provided are strongly clinically oriented. The paper addresses not only imagers performing CMR, but also clinical cardiologists who want to know which information can be obtained by CMR and how to integrate it in clinical decision-making.
Resumo:
BACKGROUND: For free-breathing cardiovascular magnetic resonance (CMR), the self-navigation technique recently emerged, which is expected to deliver high-quality data with a high success rate. The purpose of this study was to test the hypothesis that self-navigated 3D-CMR enables the reliable assessment of cardiovascular anatomy in patients with congenital heart disease (CHD) and to define factors that affect image quality. METHODS: CHD patients ≥2 years-old and referred for CMR for initial assessment or for a follow-up study were included to undergo a free-breathing self-navigated 3D CMR at 1.5T. Performance criteria were: correct description of cardiac segmental anatomy, overall image quality, coronary artery visibility, and reproducibility of great vessels diameter measurements. Factors associated with insufficient image quality were identified using multivariate logistic regression. RESULTS: Self-navigated CMR was performed in 105 patients (55% male, 23 ± 12y). Correct segmental description was achieved in 93% and 96% for observer 1 and 2, respectively. Diagnostic quality was obtained in 90% of examinations, and it increased to 94% if contrast-enhanced. Left anterior descending, circumflex, and right coronary arteries were visualized in 93%, 87% and 98%, respectively. Younger age, higher heart rate, lower ejection fraction, and lack of contrast medium were independently associated with reduced image quality. However, a similar rate of diagnostic image quality was obtained in children and adults. CONCLUSION: In patients with CHD, self-navigated free-breathing CMR provides high-resolution 3D visualization of the heart and great vessels with excellent robustness.
Resumo:
Since the first implantation of an endograft in 1991, endovascular aneurysm repair (EVAR) rapidly gained recognition. Historical trials showed lower early mortality rates but these results were not maintained beyond 4 years. Despite newer-generation devices, higher rates of reintervention are associated with EVAR during follow-up. Therefore, the best therapeutic decision relies on many parameters that the physician has to take in consideration. Patient's preferences and characteristics are important, especially age and life expectancy besides health status. Aneurysmal anatomical conditions remain probably the most predictive factor that should be carefully evaluated to offer the best treatment. Unfavorable anatomy has been observed to be associated with more complications especially endoleak, leading to more re-interventions and higher risk of late mortality. Nevertheless, technological advances have made surgeons move forward beyond the set barriers. Thus, more endografts are implanted outside the instructions for use despite excellent results after open repair especially in low-risk patients. When debating about AAA repair, some other crucial points should be analysed. It has been shown that strict surveillance is mandatory after EVAR to offer durable results and prevent late rupture. Such program is associated with additional costs and with increased risk of radiation. Moreover, a risk of loss of renal function exists when repetitive imaging and secondary procedures are required. The aim of this article is to review the data associated with abdominal aortic aneurysm and its treatment in order to establish selection criteria to decide between open or endovascular repair.
Resumo:
Fructose is a major component of dietary sugar and its overconsumption exacerbates key pathological features of metabolic syndrome. The central fructose-metabolising enzyme is ketohexokinase (KHK), which exists in two isoforms: KHK-A and KHK-C, generated through mutually exclusive alternative splicing of KHK pre-mRNAs. KHK-C displays superior affinity for fructose compared with KHK-A and is produced primarily in the liver, thus restricting fructose metabolism almost exclusively to this organ. Here we show that myocardial hypoxia actuates fructose metabolism in human and mouse models of pathological cardiac hypertrophy through hypoxia-inducible factor 1α (HIF1α) activation of SF3B1 and SF3B1-mediated splice switching of KHK-A to KHK-C. Heart-specific depletion of SF3B1 or genetic ablation of Khk, but not Khk-A alone, in mice, suppresses pathological stress-induced fructose metabolism, growth and contractile dysfunction, thus defining signalling components and molecular underpinnings of a fructose metabolism regulatory system crucial for pathological growth.
Resumo:
The prevalence of abdominal aortic aneurysm (AAA) in general population is 4-9% with a high mortality rate when ruptured. Therefore, screening programs were developed in many countries to detect small and large AAA in selected patients. Indeed, prevalence of AAA increases in patients over 65 years old with cigarette smoking history. This paper reviews recent literature related to AAA screening focusing on epidemiology, screening tests and evidence based medicine to highlight not only advantages but also disadvantages of screening programs among population.
Resumo:
AIMS: Notch1 signalling in the heart is mainly activated via expression of Jagged1 on the surface of cardiomyocytes. Notch controls cardiomyocyte proliferation and differentiation in the developing heart and regulates cardiac remodelling in the stressed adult heart. Besides canonical Notch receptor activation in signal-receiving cells, Notch ligands can also activate Notch receptor-independent responses in signal-sending cells via release of their intracellular domain. We evaluated therefore the importance of Jagged1 (J1) intracellular domain (ICD)-mediated pathways in the postnatal heart. METHODS AND RESULTS: In cardiomyocytes, Jagged1 releases J1ICD, which then translocates into the nucleus and down-regulates Notch transcriptional activity. To study the importance of J1ICD in cardiac homeostasis, we generated transgenic mice expressing a tamoxifen-inducible form of J1ICD, specifically in cardiomyocytes. Using this model, we demonstrate that J1ICD-mediated Notch inhibition diminishes proliferation in the neonatal cardiomyocyte population and promotes maturation. In the neonatal heart, a response via Wnt and Akt pathway activation is elicited as an attempt to compensate for the deficit in cardiomyocyte number resulting from J1ICD activation. In the stressed adult heart, J1ICD activation results in a dramatic reduction of the number of Notch signalling cardiomyocytes, blunts the hypertrophic response, and reduces the number of apoptotic cardiomyocytes. Consistently, this occurs concomitantly with a significant down-regulation of the phosphorylation of the Akt effectors ribosomal S6 protein (S6) and eukaryotic initiation factor 4E binding protein1 (4EBP1) controlling protein synthesis. CONCLUSIONS: Altogether, these data demonstrate the importance of J1ICD in the modulation of physiological and pathological hypertrophy, and reveal the existence of a novel pathway regulating cardiac homeostasis.
Resumo:
Prospective epidemiological data have shown that blood pressure has a graded, continuous adverse effect on the risk of various forms of CVD (including stroke, myocardial infarction, heart failure, peripheral arterial disease and end-stage renal disease). 'Raised blood pressure' is frequently considered to be any systolic blood pressure greater than 115 mmHg. It accounts for 45% of all heart disease deaths and 51% of all stroke-related deaths [1], which together are the biggest causes of morbidity and mortality worldwide [2,3,4]. Annually, there are >17 million deaths due to CVD worldwide, of which 9.4 million are attributable to complications of raised blood pressure. This highlights the importance of both high-risk and population-based strategies in blood pressure management and control.