316 resultados para Dependent Enzyme
Resumo:
The mitochondrial 70-kDa heat shock protein (mtHsp70), also known in humans as mortalin, is a central component of the mitochondrial protein import motor and plays a key role in the folding of matrix-localized mitochondrial proteins. MtHsp70 is assisted by a member of the 40-kDa heat shock protein co-chaperone family named Tid1 and a nucleotide exchange factor. Whereas, yeast mtHsp70 has been extensively studied in the context of protein import in the mitochondria, and the bacterial 70-kDa heat shock protein was recently shown to act as an ATP-fuelled unfolding enzyme capable of detoxifying stably misfolded polypeptides into harmless natively refolded proteins, little is known about the molecular functions of the human mortalin in protein homeostasis. Here, we developed novel and efficient purification protocols for mortalin and the two spliced versions of Tid1, Tid1-S, and Tid1-L and showed that mortalin can mediate the in vitro ATP-dependent reactivation of stable-preformed heat-denatured model aggregates, with the assistance of Mge1 and either Tid1-L or Tid1-S co-chaperones or yeast Mdj1. Thus, in addition of being a central component of the protein import machinery, human mortalin together with Tid1, may serve as a protein disaggregating machine which, for lack of Hsp100/ClpB disaggregating co-chaperones, may carry alone the scavenging of toxic protein aggregates in stressed, diseased, or aging human mitochondria.
Resumo:
Akt/protein kinase B (PKB) plays a critical role in the regulation of metabolism, transcription, cell migration, cell cycle progression, and cell survival. The existence of viable knockout mice for each of the three isoforms suggests functional redundancy. We generated mice with combined mutant alleles of Akt1 and Akt3 to study their effects on mouse development. Here we show that Akt1-/- Akt3+/- mice display multiple defects in the thymus, heart, and skin and die within several days after birth, while Akt1+/- Akt3-/- mice survive normally. Double knockout (Akt1-/-) Akt3-/-) causes embryonic lethality at around embryonic days 11 and 12, with more severe developmental defects in the cardiovascular and nervous systems. Increased apoptosis was found in the developing brain of double mutant embryos. These data indicate that the Akt1 gene is more essential than Akt3 for embryonic development and survival but that both are required for embryo development. Our results indicate isoform-specific and dosage-dependent effects of Akt on animal survival and development.
Resumo:
A total of 189 Candida albicans isolates have been typed by multilocus enzyme electrophoresis. The results obtained confirm the clonal mode of reproduction of C. albicans. The C. albicans populations found in the oropharynx of human immunodeficiency virus (HIV)-infected patients, in the oropharynx of healthy carriers, or in association with invasive candidiasis could not be distinguished. No clone or group of clones could be associated with the appearance of clinical disorders or with a reduced in vitro susceptibility to the antifungal agent fluconazole. Multiple and sequential oral isolates from 24 HIV-infected patients were also typed by restriction enzyme analysis with the enzymes EcoRI and HinfI and by use of the Ca3 repetitive probe. The results obtained by the combination of all three typing methods show that all but one patient each carried a unique major C. albicans clone in their oropharynx. The 21 patients with sequential isolates had the same C. albicans clones in their throats during recurrent oropharyngeal candidiasis episodes, independently of clinical status or of changes of in vitro susceptibility to fluconazole. Finally, several isolates of the same C. albicans clone found simultaneously in the oropharynx of a patient may present different levels of susceptibility to fluconazole.
Resumo:
In Duchenne muscular dystrophy, the absence of dystrophin causes progressive muscle wasting and premature death. Excessive calcium influx is thought to initiate the pathogenic cascade, resulting in muscle cell death. Urocortins (Ucns) have protected muscle in several experimental paradigms. Herein, we demonstrate that daily s.c. injections of either Ucn 1 or Ucn 2 to 3-week-old dystrophic mdx(5Cv) mice for 2 weeks increased skeletal muscle mass and normalized plasma creatine kinase activity. Histological examination showed that Ucns remarkably reduced necrosis in the diaphragm and slow- and fast-twitch muscles. Ucns improved muscle resistance to mechanical stress provoked by repetitive tetanizations. Ucn 2 treatment resulted in faster kinetics of contraction and relaxation and a rightward shift of the force-frequency curve, suggesting improved calcium homeostasis. Ucn 2 decreased calcium influx into freshly isolated dystrophic muscles. Pharmacological manipulation demonstrated that the mechanism involved the corticotropin-releasing factor type 2 receptor, cAMP elevation, and activation of both protein kinase A and the cAMP-binding protein Epac. Moreover, both STIM1, the calcium sensor that initiates the assembly of store-operated channels, and the calcium-independent phospholipase A(2) that activates these channels were reduced in dystrophic muscle by Ucn 2. Altogether, our results demonstrate the high potency of Ucns for improving dystrophic muscle structure and function, suggesting that these peptides may be considered for treatment of Duchenne muscular dystrophy.
Resumo:
BACKGROUND: The excess in cardiovascular risk in patients with rheumatoid arthritis provides a strong rationale for early therapeutical interventions. In view of the similarities between atherosclerosis and rheumatoid arthritis and the proven benefit of angiotensin-converting enzyme inhibitors in atherosclerotic vascular disease, it was the aim of the present study to delineate the impact of ramipril on endothelial function as well as on markers of inflammation and oxidative stress in patients with rheumatoid arthritis. METHODS AND RESULTS: Eleven patients with rheumatoid arthritis were included in this randomized, double-blind, crossover study to receive ramipril in an uptitration design (2.5 to 10 mg) for 8 weeks followed by placebo, or vice versa, on top of standard antiinflammatory therapy. Endothelial function assessed by flow-mediated dilation of the brachial artery, markers of inflammation and oxidative stress, and disease activity were investigated at baseline and after each treatment period. Endothelial function assessed by flow-mediated dilation increased from 2.85+/-1.49% to 4.00+/-1.81% (P=0.017) after 8 weeks of therapy with ramipril but did not change with placebo (from 2.85+/-1.49% to 2.84+/-2.47%; P=0.88). Although systolic blood pressure and heart rate remained unaltered, diastolic blood pressure decreased slightly from 78+/-7 to 74+/-6 mm Hg (P=0.03). Tumor necrosis factor-alpha showed a significant inverse correlation with flow-mediated dilation (r=-0.408, P=0.02), and CD40 significantly decreased after ramipril therapy (P=0.049). CONCLUSIONS: Angiotensin-converting enzyme inhibition with 10 mg/d ramipril for 8 weeks on top of current antiinflammatory treatment markedly improved endothelial function in patients with rheumatoid arthritis. This finding suggests that angiotensin-converting enzyme inhibition may provide a novel strategy to prevent cardiovascular events in these patients.
Resumo:
The Ly49 natural killer (NK)-cell receptor family comprises both activating and inhibitory members, which recognize major histocompatibility complex (MHC) class I or MHC class I-related molecules and are involved in target recognition. As previously shown, the Ly49E receptor fails to bind to a variety of soluble or cell-bound MHC class I molecules, indicating that its ligand is not an MHC class I molecule. Using BWZ.36 reporter cells, we demonstrate triggering of Ly49E by the completely distinct, non-MHC-related protein urokinase plasminogen activator (uPA). uPA is known to be secreted by a variety of cells, including epithelial and hematopoietic cells, and levels are up-regulated during tissue remodeling, infections, and tumorigenesis. Here we show that addition of uPA to Ly49E-positive adult and fetal NK cells inhibits interferon-gamma secretion and reduces their cytotoxic potential, respectively. These uPA-mediated effects are Ly49E-dependent, as they are reversed by addition of anti-Ly49E monoclonal antibody and by down-regulation of Ly49E expression using RNA interference. Our results suggest that uPA, besides its established role in fibrinolysis, tissue remodeling, and tumor metastasis, could be involved in NK cell-mediated immune surveillance and tumor escape.
Resumo:
GLUT2-/- mice reexpressing GLUT1 or GLUT2 in their beta-cells (RIPGLUT1 x GLUT2-/- or RIPGLUT2 x GLUT2-/- mice) have nearly normal glucose-stimulated insulin secretion but show high glucagonemia in the fed state. Because this suggested impaired control of glucagon secretion, we set out to directly evaluate the control of glucagonemia by variations in blood glucose concentrations. Using fasted RIPGLUT1 x GLUT2-/- mice, we showed that glucagonemia was no longer increased by hypoglycemic (2.5 mmol/l glucose) clamps or suppressed by hyperglycemic (10 and 20 mmol/l glucose) clamps. However, an increase in plasma glucagon levels was detected when glycemia was decreased to < or =1 mmol/l, indicating preserved glucagon secretory ability, but of reduced sensitivity to glucopenia. To evaluate whether the high-fed glucagonemia could be due to an abnormally increased tone of the autonomic nervous system, fed mutant mice were injected with the ganglionic blockers hexamethonium and chlorisondamine. Both drugs lead to a rapid return of glucagonemia to the levels found in control fed mice. We conclude that 1) in the absence of GLUT2, there is an impaired control of glucagon secretion by low or high glucose; 2) this impaired glucagon secretory activity cannot be due to absence of GLUT2 from alpha-cells because these cells do not normally express this transporter; 3) this dysregulation may be due to inactivation of GLUT2-dependent glucose sensors located outside the endocrine pancreas and controlling glucagon secretion; and 4) because fed hyperglucagonemia is rapidly reversed by ganglionic blockers, this suggests that in the absence of GLUT2, there is an increased activity of the autonomic nervous system stimulating glucagon secretion during the fed state.
Resumo:
BACKGROUND: Because traditional nonsteroidal antiinflammatory drugs are associated with increased risk for acute cardiovascular events, current guidelines recommend acetaminophen as the first-line analgesic of choice on the assumption of its greater cardiovascular safety. Data from randomized clinical trials prospectively addressing cardiovascular safety of acetaminophen, however, are still lacking, particularly in patients at increased cardiovascular risk. Hence, the aim of this study was to evaluate the safety of acetaminophen in patients with coronary artery disease. METHODS AND RESULTS: The 33 patients with coronary artery disease included in this randomized, double-blind, placebo-controlled, crossover study received acetaminophen (1 g TID) on top of standard cardiovascular therapy for 2 weeks. Ambulatory blood pressure, heart rate, endothelium-dependent and -independent vasodilatation, platelet function, endothelial progenitor cells, markers of the renin-angiotensin system, inflammation, and oxidative stress were determined at baseline and after each treatment period. Treatment with acetaminophen resulted in a significant increase in mean systolic (from 122.4±11.9 to 125.3±12.0 mm Hg P=0.02 versus placebo) and diastolic (from 73.2±6.9 to 75.4±7.9 mm Hg P=0.02 versus placebo) ambulatory blood pressures. On the other hand, heart rate, endothelial function, early endothelial progenitor cells, and platelet function did not change. CONCLUSIONS: This study demonstrates for the first time that acetaminophen induces a significant increase in ambulatory blood pressure in patients with coronary artery disease. Thus, the use of acetaminophen should be evaluated as rigorously as traditional nonsteroidal antiinflammatory drugs and cyclooxygenase-2 inhibitors, particularly in patients at increased cardiovascular risk. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT00534651.
Resumo:
Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine produced by many cells and tissues including pancreatic beta-cells, liver, skeletal muscle, and adipocytes. This study investigates the potential role of MIF in carbohydrate homeostasis in a physiological setting outside of severe inflammation, utilizing Mif knockout (MIF-/-) mice. Compared with wild-type (WT) mice, MIF-/- mice had a lower body weight, from birth until 4 months of age, but subsequently gained weight faster, resulting in a higher body weight at 12 months of age. The lower weight in young mice was related to a higher energy expenditure, and the higher weight in older mice was related to an increased food intake and a higher fat mass. Fasting blood insulin level was higher in MIF-/- mice compared with WT mice at any age. After i.p. glucose injection, the elevation of blood insulin level was higher in MIF-/- mice compared with WT mice, at 2 months of age, but was lower in 12-month-old MIF-/- mice. As a result, the glucose clearance during intraperitoneal glucose tolerance tests was higher in MIF-/- mice compared with WT mice until 4 months of age, and was lower in 12-month-old MIF-/- mice. Insulin resistance was estimated (euglycemic-hyperinsulinemic clamp tests), and the phosphorylation activity of AKT was similar in MIF-/- mice and WT mice. In conclusion, this mouse model provides evidence for the role of MIF in the control of glucose homeostasis.
Resumo:
RESUME La première étape primordiale au cycle de vie du Plasmodium dans un hôte mammifère est l'invasion des hepatocytes par des sporozoites. L'infection finale des hepatocytes est précédée de la traversée de plusieurs cellules hôtes, rompant les membranes plasmiques et ayant comme résultat la sécrétion des facteurs cytotoliques dans le micro-environnement. Ce matériel endogène libéré est fortement stimulant/immunogène et peut servir de signal de danger initiant des réponses distinctes dans diverses cellules. De nos jours, le caractère essentiel et salutaire de la migration des sporozoites comme étape d'infection du Plasmodium est vivement controversée. Ainsi, notre étude a visé à caractériser l'effet de l'interaction du parasite avec ses cellules hôtes d'un point de vue immunologique. En particulier, nous avons voulu évaluer l'effet de la perte de matériel cellulaire pendant l'infection de Plasmodium sur les hepatocytes primaires de souris et sur des cultures cellulaires HepG2. Nous avons observé que les facteurs cytotoxiques dérivés des cellules endommagés activent NF-κB - un important régulateur de réponse inflammatoires -dans des cellules voisines des cellules endommagés, qui sont des cellules hôtes potentielles pour l'infection finale du parasite. Cette activation de NF-κB s'est produite peu de temps après l'infection et a mené in vitro et in vivo à une réduction d'infection de façon dépendante du temps, un effet qui a pu être compensé par l'addition de BAY11-7082, un inhibiteur spécifique de NF-κB. De plus, aucune activation de NF-κB avec des parasites SPECT-/-, incapables de traverser les hepatocytes, n'a été observée. Nous avons montré parla suite que l'activation de NF-κB induit l'expression de l'enzyme iNOS dans les hepatocytes, qui est responsable d'une diminution des hepatocytes infectés. En outre, les hepatocytes primaires des souris MyD88-/- n'ont montré ni activation de NF-κB, ni expression d'iNOS lors de l'infection, ce qui suggère la participation des membres de famille du Toll/IL-1 récepteur dans la reconnaissance des facteurs cytosoxiques. En effet, le manque de MyD88 a augmenté significativement l'infection in vitro et in vivo. D'autre part, un rôle bénéfique pour l'activation de NF-κB a été évalué. Les cellules infectées étaient plus résistantes contre l'apoptose induite par Fas (CD95/Apo-1) que les cellules non infectées ou les cellules infectées dans lesquelles NF-κB a été bloqué par BAY11-7082 in vitro. Paradoxalement, l'expression d'iNOS contribue à la protection des cellules infectées contre l'apoptose pax Fas, puisque le traitement avec l'inhibiteur spécifique SMT (S-methylisothiourea) a rendu les cellules infectées plus susceptibles à l'apoptose. Un effet bénéfique additionnel pour le parasite est que la plupart des cellules hôtes traversées présentent des peptides du parasite aux cellules T cytotoxiques spécifiques et peuvent donc réorienter la réaction immune spécifique sur les cellules non infectées. Nous montrons que les cellules hôtes endommagés par la migration du parasite induit l'inflammation, qui limite l'ampleur de l'infection. D'autre part, nos données soutiennent que la survie du parasite Plasmodium dans le foie est assurée par une augmentation de la résistance des hepatocytes contre l'apoptose. SUMMARY The first obligatory step of the Plasmodium life cycle in the mammalian host is the invasion of hepatocytes by sporozoites. Final hepatocyte infection involves the penetration of several host cells, whose plasma membranes are ruptured in the process, resulting in the release of cytosolic factors into the microenvironment. This released endogenous material is highly stimulatory / immunogenic and can serve as a danger signal initiating distinct responses in various cells. To date, it is highly controversial whether sporozoite migration through hepatocytes is an essential and beneficial step for Plasmodium infection. Thus, our study aimed at characterizing the effect of the interaction of the parasite with its host cells from an immunological point of view In particular, we wanted to evaluate the effect of cell material leakage during Plasmodium infection on cultured mouse primary hepatocytes and HepG2 cells. We observed that wounded cell-derived cytosolic factors activate NF-κB - a main regulator of host inflammatory responses - in cells bordering wounded cells, which are potential host cells for final parasite infection. This activation of NF-κB occurred shortly after infection and led to a reduction of infection load in a time dependent manner in vitro and in viva, an effect that could be reverted by addition of the specific NF-κB inhibitor BAY11-7082. In addition, no NF-κB activation was observed when SPECT-/- parasites, which are devoid of hepatocyte traversing properties, were used. We provide further evidence that NF-κB activation causes the induction of inducible nitric oxide synthase (iNOS) expression in hepatocytes, and this is, in turn, responsible for a decrease in Plasmodium-infected hepatocytes. Furthermore, primary hepatocytes from MyD88-/- mice showed no NF-κB activation and iNOS expression upon infection, suggesting a role of the Toll/IL-1 receptor family members in sensing cytosolic factors. Indeed, lack of MyD88 significantly increased infection in vitro and in vivo. In a further complementary series of experiments, we assessed a possible beneficial role for the activation of NF-κB. Infected cells were more resistant to Fas (CD95/Apo-1)-mediated apoptosis than uninfected cells or infected cells in which NF-κB was blocked by BAYl1-7082 in vitro. Paradoxically, iNOS expression contributes to the protection of infected cells from Fas-induced apoptosis, since treatment with the specific iNOS inhibitor SMT (S-Methylisothiourea Sulfate) rendered the infected cells more susceptible to apoptosis. An additional beneficial effect of host cell traversal for the parasite is the fact that mainly traversed cells present parasite-derived peptides to specific cytotoxic T cells and therefore may redirect the specific immune response to uninfected cells. In summary, we have shown that host cells wounded by parasite migration induce inflammation, which limits the extent of parasite infection. In addition, our data support the notion that survival of Plasmodium parasites in the liver is mediated by increasing the resistance of hepatocytes to Fas-induced apoptosis.
Resumo:
α-dystroglycan is a highly O-glycosylated extracellular matrix receptor that is required for anchoring of the basement membrane to the cell surface and for the entry of Old World arenaviruses into cells. Like-acetylglucosaminyltransferase (LARGE) is a key molecule that binds to the N-terminal domain of α-dystroglycan and attaches ligand-binding moieties to phosphorylated O-mannose on α-dystroglycan. Here we show that the LARGE modification required for laminin- and virus-binding occurs on specific Thr residues located at the extreme N terminus of the mucin-like domain of α-dystroglycan. Deletion and mutation analyses demonstrate that the ligand-binding activity of α-dystroglycan is conferred primarily by LARGE modification at Thr-317 and -319, within the highly conserved first 18 amino acids of the mucin-like domain. The importance of these paired residues in laminin-binding and clustering activity on myoblasts and in arenavirus cell entry is confirmed by mutational analysis with full-length dystroglycan. We further demonstrate that a sequence of five amino acids, Thr(317)ProThr(319)ProVal, contains phosphorylated O-glycosylation and, when modified by LARGE is sufficient for laminin-binding. Because the N-terminal region adjacent to the paired Thr residues is removed during posttranslational maturation of dystroglycan, our results demonstrate that the ligand-binding activity resides at the extreme N terminus of mature α-dystroglycan and is crucial for α-dystroglycan to coordinate the assembly of extracellular matrix proteins and to bind arenaviruses on the cell surface.
Resumo:
Background:It has been suggested that the relative importance of oestrogen-metabolising pathways may affect the risk of oestrogen-dependent tumours including endometrial cancer. One hypothesis is that the 2-hydroxy pathway is protective, whereas the 16α-hydroxy pathway is harmful.Methods:We conducted a case-control study nested within three prospective cohorts to assess whether the circulating 2-hydroxyestrone : 16α-hydroxyestrone (2-OHE1 : 16α-OHE1) ratio is inversely associated with endometrial cancer risk in postmenopausal women. A total of 179 cases and 336 controls, matching cases on cohort, age and date of blood donation, were included. Levels of 2-OHE1 and 16α-OHE1 were measured using a monoclonal antibody-based enzyme assay.Results:Endometrial cancer risk increased with increasing levels of both metabolites, with odds ratios in the top tertiles of 2.4 (95% CI=1.3, 4.6; P(trend)=0.007) for 2-OHE1 and 1.9 (95% CI=1.1, 3.5; P(trend)=0.03) for 16α-OHE1 in analyses adjusting for endometrial cancer risk factors. These associations were attenuated and no longer statistically significant after further adjustment for oestrone or oestradiol levels. No significant association was observed for the 2-OHE1 : 16α-OHE1 ratio.Conclusion:Our results do not support the hypothesis that greater metabolism of oestrogen via the 2-OH pathway, relative to the 16α-OH pathway, protects against endometrial cancer.