326 resultados para Carbohydrate-metabolism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drug metabolism can produce metabolites with physicochemical and pharmacological properties that differ substantially from those of the parent drug, and consequently has important implications for both drug safety and efficacy. To reduce the risk of costly clinical-stage attrition due to the metabolic characteristics of drug candidates, there is a need for efficient and reliable ways to predict drug metabolism in vitro, in silico and in vivo. In this Perspective, we provide an overview of the state of the art of experimental and computational approaches for investigating drug metabolism. We highlight the scope and limitations of these methods, and indicate strategies to harvest the synergies that result from combining measurement and prediction of drug metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pheochromocytoma (PHEO) and paraganglioma (PGL) are catecholamine-producing neuroendocrine tumors that arise respectively inside or outside the adrenal medulla. Several reports have shown that adrenal glucocorticoids (GC) play an important regulatory role on the genes encoding the main enzymes involved in catecholamine (CAT) synthesis i.e. tyrosine hydroxylase (TH), dopamine β-hydroxylase (DBH) and phenylethanolamine N-methyltransferase (PNMT). To assess the influence of tumor location on CAT metabolism, 66 tissue samples (53 PHEO, 13 PGL) and 73 plasma samples (50 PHEO, 23 PGL) were studied. Western blot and qPCR were performed for TH, DBH and PNMT expression. We found a significantly lower intra-tumoral concentration of CAT and metanephrines (MNs) in PGL along with a downregulation of TH and PNMT at both mRNA and protein level compared with PHEO. However, when PHEO were partitioned into noradrenergic (NorAd) and mixed tumors based on an intra-tumoral CAT ratio (NE/E >90%), PGL and NorAd PHEO sustained similar TH, DBH and PNMT gene and protein expression. CAT concentration and composition were also similar between NorAd PHEO and PGL, excluding the use of CAT or MNs to discriminate between PGL and PHEO on the basis of biochemical tests. We observed an increase of TH mRNA concentration without correlation with TH protein expression in primary cell culture of PHEO and PGL incubated with dexamethasone during 24 hours; no changes were monitored for PNMT and DBH at both mRNA and protein level in PHEO and PGL. Altogether, these results indicate that long term CAT synthesis is not driven by the close environment where the tumor develops and suggest that GC alone is not sufficient to regulate CAT synthesis pathway in PHEO/PGL.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

UNLABELLED: CcrM is an orphan DNA methyltransferase nearly universally conserved in a vast group of Alphaproteobacteria. In Caulobacter crescentus, it controls the expression of key genes involved in the regulation of the cell cycle and cell division. Here, we demonstrate, using an experimental evolution approach, that C. crescentus can significantly compensate, through easily accessible genetic changes like point mutations, the severe loss in fitness due to the absence of CcrM, quickly improving its growth rate and cell morphology in rich medium. By analyzing the compensatory mutations genome-wide in 12 clones sampled from independent ΔccrM populations evolved for ~300 generations, we demonstrated that each of the twelve clones carried at least one mutation that potentially stimulated ftsZ expression, suggesting that the low intracellular levels of FtsZ are the major burden of ΔccrM mutants. In addition, we demonstrate that the phosphoenolpyruvate-carbohydrate phosphotransfer system (PTS) actually modulates ftsZ and mipZ transcription, uncovering a previously unsuspected link between metabolic regulation and cell division in Alphaproteobacteria. We present evidence that point mutations found in genes encoding proteins of the PTS provide the strongest fitness advantage to ΔccrM cells cultivated in rich medium despite being disadvantageous in minimal medium. This environmental sign epistasis might prevent such mutations from getting fixed under changing natural conditions, adding a plausible explanation for the broad conservation of CcrM. IMPORTANCE: In bacteria, DNA methylation has a variety of functions, including the control of DNA replication and/or gene expression. The cell cycle-regulated DNA methyltransferase CcrM modulates the transcription of many genes and is critical for fitness in Caulobacter crescentus. Here, we used an original experimental evolution approach to determine which of its many targets make CcrM so important physiologically. We show that populations lacking CcrM evolve quickly, accumulating an excess of mutations affecting, directly or indirectly, the expression of the ftsZ cell division gene. This finding suggests that the most critical function of CcrM in C. crescentus is to promote cell division by enhancing FtsZ intracellular levels. During this work, we also discovered an unexpected link between metabolic regulation and cell division that might extend to other Alphaproteobacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pancreatic ductal adenocarcinoma (PDAC) is expected to become the second leading cause of cancer death by 2030. Current therapeutic options are limited, warranting an urgent need to explore innovative treatment strategies. Due to specific microenvironment constraints including an extensive desmoplastic stroma reaction, PDAC faces major metabolic challenges, principally hypoxia and nutrient deprivation. Their connection with oncogenic alterations such as KRAS mutations has brought metabolic reprogramming to the forefront of PDAC therapeutic research. The Warburg effect, glutamine addiction, and autophagy stand as the most important adaptive metabolic mechanisms of cancer cells themselves, however metabolic reprogramming is also an important feature of the tumor microenvironment, having a major impact on epigenetic reprogramming and tumor cell interactions with its complex stroma. We present a comprehensive overview of the main metabolic adaptations contributing to PDAC development and progression. A review of current and future therapies targeting this range of metabolic pathways is provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stereochemical factors are known to play a significant role in the metabolism of drugs and other xenobiotics. Following Prelog's lead, types of metabolic stereoselectivity can be categorized as (i) substrate stereoselectivity (the differential metabolism of two or more stereoisomeric substrates) and (ii) product stereoselectivity (the differential formation of two or more stereoisomeric metabolites from a single substrate). Combinations of the two categories exist as (iii) substrate-product stereoselectivities, meaning that product stereoselectivity itself is substrate stereoselective. Here, published examples of metabolic stereoselectivities are examined in the light of these concepts. In parallel, a graphical scheme is presented with a view to facilitate learning and help researchers to solve classification problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Globally, Africans and African Americans experience a disproportionate burden of type 2 diabetes, compared to other race and ethnic groups. The aim of the study was to examine the association of plasma glucose with indices of glucose metabolism in young adults of African origin from 5 different countries. METHODS: We identified participants from the Modeling the Epidemiologic Transition Study, an international study of weight change and cardiovascular disease (CVD) risk in five populations of African origin: USA (US), Jamaica, Ghana, South Africa, and Seychelles. For the current study, we included 667 participants (34.8 ± 6.3 years), with measures of plasma glucose, insulin, leptin, and adiponectin, as well as moderate and vigorous physical activity (MVPA, minutes/day [min/day]), daily sedentary time (min/day), anthropometrics, and body composition. RESULTS: Among the 282 men, body mass index (BMI) ranged from 22.1 to 29.6 kg/m(2) in men and from 25.8 to 34.8 kg/m(2) in 385 women. MVPA ranged from 26.2 to 47.1 min/day in men, and from 14.3 to 27.3 min/day in women and correlated with adiposity (BMI, waist size, and % body fat) only among US males after controlling for age. Plasma glucose ranged from 4.6 ± 0.8 mmol/L in the South African men to 5.8 mmol/L US men, while the overall prevalence for diabetes was very low, except in the US men and women (6.7 and 12 %, respectively). Using multivariate linear regression, glucose was associated with BMI, age, sex, smoking hypertension, daily sedentary time but not daily MVPA. CONCLUSION: Obesity, metabolic risk, and other potential determinants vary significantly between populations at differing stages of the epidemiologic transition, requiring tailored public health policies to address local population characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Weight regain after caloric restriction results in accelerated fat storage in adipose tissue. This catch-up fat phenomenon is postulated to result partly from suppressed skeletal muscle thermogenesis, but the underlying mechanisms are elusive. We investigated whether the reduced rate of skeletal muscle contraction-relaxation cycle that occurs after caloric restriction persists during weight recovery and could contribute to catch-up fat. Using a rat model of semistarvation-refeeding, in which fat recovery is driven by suppressed thermogenesis, we show that contraction and relaxation of leg muscles are slower after both semistarvation and refeeding. These effects are associated with (i) higher expression of muscle deiodinase type 3 (DIO3), which inactivates tri-iodothyronine (T3), and lower expression of T3-activating enzyme, deiodinase type 2 (DIO2), (ii) slower net formation of T3 from its T4 precursor in muscles, and (iii) accumulation of slow fibers at the expense of fast fibers. These semistarvation-induced changes persisted during recovery and correlated with impaired expression of transcription factors involved in slow-twitch muscle development. We conclude that diminished muscle thermogenesis following caloric restriction results from reduced muscle T3 levels, alteration in muscle-specific transcription factors, and fast-to-slow fiber shift causing slower contractility. These energy-sparing effects persist during weight recovery and contribute to catch-up fat.