487 resultados para Brain Plasticity
Resumo:
To ensure efficient energy supply to the high demanding brain, nutrients are transported into brain cells via specific glucose (GLUT) and monocarboxylate transporters (MCT). Mitochondrial dysfunction and altered glucose metabolism are thought to play an important role in the progression of neurodegenerative diseases, including multiple sclerosis (MS). Here, we investigated the cellular localization of key GLUT and MCT proteins in human brain tissue of non-neurological controls and MS patients. We show that in control brain tissue GLUT and MCT proteins were abundantly expressed in a variety of central nervous system cells, particularly in microglia and endothelial cells. In active MS lesions, GLUTs and MCTs were highly expressed in infiltrating leukocytes and reactive astrocytes. Astrocytes manifest increased MCT1 staining and maintain GLUT expression in inactive lesions, whereas demyelinated axons exhibit significantly reduced GLUT3 and MCT2 immunoreactivity in inactive lesions. Finally, we demonstrated that the co-transcription factor peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC-1α), an important protein involved in energy metabolism, is highly expressed in reactive astrocytes in active MS lesions. Overexpression of PGC-1α in astrocyte-like cells resulted in increased production of several GLUT and MCT proteins. In conclusion, we provide for the first time a comprehensive overview of key nutrient transporters in white matter brain samples. Moreover, our data demonstrate an altered expression of these nutrient transporters in MS brain tissue, including a marked reduction of axonal GLUT3 and MCT2 expression in chronic lesions, which may impede efficient nutrient supply to the hypoxic demyelinated axons thereby contributing to the ongoing neurodegeneration in MS. GLIA 2014;62:1125-1141.
Resumo:
Recent evidence supports and reinforces the concept that environmental cues may reprogramme somatic cells and change their natural fate. In the present review, we concentrate on environmental reprogramming and fate potency of different epithelial cells. These include stratified epithelia, such as the epidermis, hair follicle, cornea and oesophagus, as well as the thymic epithelium, which stands alone among simple and stratified epithelia, and has been shown recently to contain stem cells. In addition, we briefly discuss the pancreas as an example of plasticity of intrinsic progenitors and even differentiated cells. Of relevance, examples of plasticity and fate change characterize pathologies such as oesophageal metaplasia, whose possible cell origin is still debated, but has important implications as a pre-neoplastic event. Although much work remains to be done in order to unravel the full potential and plasticity of epithelial cells, exploitation of this phenomenon has already entered the clinical arena, and might provide new avenues for future cell therapy of these tissues.
Resumo:
The visual cortex in each hemisphere is linked to the opposite hemisphere by axonal projections that pass through the splenium of the corpus callosum. Visual-callosal connections in humans and macaques are found along the V1/V2 border where the vertical meridian is represented. Here we identify the topography of V1 vertical midline projections through the splenium within six human subjects with normal vision using diffusion-weighted MR imaging and probabilistic diffusion tractography. Tractography seed points within the splenium were classified according to their estimated connectivity profiles to topographic subregions of V1, as defined by functional retinotopic mapping. First, we report a ventral-dorsal mapping within the splenium with fibers from ventral V1 (representing the upper visual field) projecting to the inferior-anterior corner of the splenium and fibers from dorsal V1 (representing the lower visual field) projecting to the superior-posterior end. Second, we also report an eccentricity gradient of projections from foveal-to-peripheral V1 subregions running in the anterior-superior to posterior-inferior direction, orthogonal to the dorsal-ventral mapping. These results confirm and add to a previous diffusion MRI study (Dougherty et al., 2005) which identified a dorsal/ventral mapping of human splenial fibers. These findings yield a more detailed view of the structural organization of the splenium than previously reported and offer new opportunities to study structural plasticity in the visual system.
Resumo:
Hyperammonemia can be caused by various acquired or inherited disorders such as urea cycle defects. The brain is much more susceptible to the deleterious effects of ammonium in childhood than in adulthood. Hyperammonemia provokes irreversible damage to the developing central nervous system: cortical atrophy, ventricular enlargement and demyelination lead to cognitive impairment, seizures and cerebral palsy. The mechanisms leading to these severe brain lesions are still not well understood, but recent studies show that ammonium exposure alters several amino acid pathways and neurotransmitter systems, cerebral energy metabolism, nitric oxide synthesis, oxidative stress and signal transduction pathways. All in all, at the cellular level, these are associated with alterations in neuronal differentiation and patterns of cell death. Recent advances in imaging techniques are increasing our understanding of these processes through detailed in vivo longitudinal analysis of neurobiochemical changes associated with hyperammonemia. Further, several potential neuroprotective strategies have been put forward recently, including the use of NMDA receptor antagonists, nitric oxide inhibitors, creatine, acetyl-L-carnitine, CNTF or inhibitors of MAPKs and glutamine synthetase. Magnetic resonance imaging and spectroscopy will ultimately be a powerful tool to measure the effects of these neuroprotective approaches.
Resumo:
The human brain displays heterogeneous organization in both structure and function. Here we develop a method to characterize brain regions and networks in terms of information-theoretic measures. We look at how these measures scale when larger spatial regions as well as larger connectome sub-networks are considered. This framework is applied to human brain fMRI recordings of resting-state activity and DSI-inferred structural connectivity. We find that strong functional coupling across large spatial distances distinguishes functional hubs from unimodal low-level areas, and that this long-range functional coupling correlates with structural long-range efficiency on the connectome. We also find a set of connectome regions that are both internally integrated and coupled to the rest of the brain, and which resemble previously reported resting-state networks. Finally, we argue that information-theoretic measures are useful for characterizing the functional organization of the brain at multiple scales.
Resumo:
The lithium-pilocarpine model mimics most features of human temporal lobe epilepsy. Following our prior studies of cerebral metabolic changes, here we explored the expression of transporters for glucose (GLUT1 and GLUT3) and monocarboxylates (MCT1 and MCT2) during and after status epilepticus (SE) induced by lithium-pilocarpine in PN10, PN21, and adult rats. In situ hybridization was used to study the expression of transporter mRNAs during the acute phase (1, 4, 12 and 24h of SE), the latent phase, and the early and late chronic phases. During SE, GLUT1 expression was increased throughout the brain between 1 and 12h of SE, more strongly in adult rats; GLUT3 increased only transiently, at 1 and 4h of SE and mainly in PN10 rats; MCT1 was increased at all ages but 5-10-fold more in adult than in immature rats; MCT2 expression increased mainly in adult rats. At all ages, MCT1 and MCT2 up-regulation was limited to the circuit of seizures while GLUT1 and GLUT3 changes were more widespread. During the latent and chronic phases, the expression of nutrient transporters was normal in PN10 rats. In PN21 rats, GLUT1 was up-regulated in all brain regions. In contrast, in adult rats GLUT1 expression was down-regulated in the piriform cortex, hilus and CA1 as a result of extensive neuronal death. The changes in nutrient transporter expression reported here further support previous findings in other experimental models demonstrating rapid transcriptional responses to marked changes in cerebral energetic/glucose demand.
Resumo:
Behavioural symptoms such as abnormal emotionality (including anxious and depressive episodes) and cognition (for instance weakened decision-making) are highly frequent in both chronic pain patients and their animal models. The theory developed in the present article posits that alterations in glial cells (astrocytes and microglia) in cortical and limbic brain regions might be the origin of such emotional and cognitive chronic pain-associated impairments. Indeed, in mood disorders (unipolar depression, anxiety disorders, autism or schizophrenia) glial changes in brain regions involved in mood control (prefrontal and cingulate cortices, amygdala and the hippocampus) have been recurrently described. Besides, glial cells have been undoubtedly identified as key actors in the sensory component of chronic pain, owing to the profound phenotypical changes they undergo throughout the sensory pathway. Hence, the possibility arises that brain astrocytes and microglia react in upper brain structures as well, mediating the related mood and cognitive dysfunctions in chronic pain. So far, only very few studies have provided results in this prospect, mainly indirectly in pain-independent researches. Nevertheless, the first scant available data seem to merge in a unified description of a brain glial reaction occurring after chronic peripheral lesion. The present article uses this scarce literature to formulate the provocative theory of a glia-driven mood and cognitive dysfunction in chronic pain, expounding upon its validity and putative therapeutical impact as well as its current limitations and expected future developments.
Resumo:
Glioblastoma multiforme is the most common and most malignant primary brain tumour with a dismal prognosis. The advent of new chemotherapies with alkylating agents crossing the blood-brain barrier, like temozolomide, have permitted to notably ameliorate the survival of a subgroup of patients. Improved outcome was associated with epigenetic silencing of the MGMT (O6-methylguanin methyltransferase) gene by promotor methylation, thereby blocking its repair capability, thus rendering the alkylating agents more effective. This particularity can be tested by methylation specific PCR on resected tumour tissue, best on fresh frozen biopsies, and allows identification of patients more susceptible to respond favourably to the treatment.
Resumo:
The presence of three water channels (aquaporins, AQP), AQP1, AQP4 and AQP9 were observed in normal brain and several rodent models of brain pathologies. Little is known about AQP distribution in the primate brain and its knowledge will be useful for future testing of drugs aimed at preventing brain edema formation. We studied the expression and cellular distribution of AQP1, 4 and 9 in the non-human primate brain. The distribution of AQP4 in the non-human primate brain was observed in perivascular astrocytes, comparable to the observation made in the rodent brain. In contrast with rodent, primate AQP1 is expressed in the processes and perivascular endfeet of a subtype of astrocytes mainly located in the white matter and the glia limitans, possibly involved in water homeostasis. AQP1 was also observed in neurons innervating the pial blood vessels, suggesting a possible role in cerebral blood flow regulation. As described in rodent, AQP9 mRNA and protein were detected in astrocytes and in catecholaminergic neurons. However additional locations were observed for AQP9 in populations of neurons located in several cortical areas of primate brains. This report describes a detailed study of AQP1, 4 and 9 distributions in the non-human primate brain, which adds to the data already published in rodent brains. This relevant species differences have to be considered carefully to assess potential drugs acting on AQPs non-human primate models before entering human clinical trials.
Resumo:
Microtubule-associated protein 1b, previously also referred to as microtubule-associated protein 5 or microtubule-associated protein 1x, is a major component of the juvenile cytoskeleton, and is essential during the early differentiation of neurons. It is required for axonal growth and its function is influenced by phosphorylation. The distribution of microtubule-associated protein 1b in kitten cerebellum and cortex during postnatal development was studied with two monoclonal antibodies. Hybridoma clone AA6 detected a non-phosphorylated site, while clone 125 detected a site phosphorylated by casein-kinase II. On blots, both monoclonal antibodies stained the same two proteins of similar molecular weights, also referred to as microtubule-associated protein 5a and 5b. Antibody 125 detected a phosphorylated epitope on both microtubule-associated protein 1b forms; dephosphorylation by alkaline phosphatase abolished the immunological detection. During development of cat cortex and cerebellum, AA6 stained the perikarya and dendrites of neurons during their early differentiation, and especially labelled newly generated axons. The staining decreased during development, and axonal staining was reduced in adult tissue. In contrast to previous reports which demonstrated that antibodies against phosphorylated microtubule-associated protein 1b label exclusively axons, antibody 125 also localized microtubule-associated protein 1b in cell bodies and dendrites, even in adulthood. Some nuclear staining was observed, indicating that a phosphorylated form of microtubule-associated protein 1b may participate in nuclear function. These results demonstrate that microtubule-associated protein 1b is subject to CK2-type phosphorylation throughout neuronal maturation and suggest that phosphorylation of microtubule-associated protein 1b may participate in juvenile and mature-type microtubule functions throughout development.
Resumo:
Summary Mood disorders are among the most prevalent, psychosocial^ debilitating, chronic and relapsing forms of psychiatric illnesses. Despite considerable advances in their characterization, the heterogeneous nature of susceptibility factors and patient's symptoms could account for the lack of totally effective and remissive treatment. The neurobiological hypothesis of mood disorders etiology has evolved since the monoamine and neurotrophin theories and current evidence is pointing toward their integration in a broader polygenic epistatic model resulting in defective neuroplasticity of circuitries involved in emotion processing. Consequently, the unraveling of molecular underpinning pathways involved in neuronal plasticity, commonly altered among mood disorder syndromes and symptoms, should shed light on their etiology and provide new drug target. The transcription factor CREB has been critically involved in the long-lasting forms of neuronal plasticity and in the regulation of several mood disorders susceptibility genes. In addition, altered CREB activity has been associated with mood disorders pathophysiology and pharmacotherapy. Interestingly, the newly-identified protein CREB-regulated transcription coactivator 1 (CRTC1) was shown by previous studies in the laboratory to be a neuroactivity- dependent cAMP and calcium sensor, a potent activator of CREB-dependent transcription and involved in neuroplasticity mechanisms associated with long-term synaptic potentiation. Furthermore, the major mood disorder susceptibility gene Bdnf was suggested to be transcriptional regulated by CRTC1. Therefore, we aimed to investigate a role for CRTC1 in mood disorders by generating and characterizing a Crtcl deficient mouse model at the behavioral and molecular levels. Interestingly, their comprehensive characterization revealed a behavioral profile mirroring several major symptoms comorbid in mood disorders, including altered social interactions, aggressive behaviors, obesity, psychomotor retardation, increased emotional response to stress, decreased sexual drive and depression-like behaviors. To investigate the molecular mechanisms underlying these pathological behaviors and the implication of CRTC1 in the regulation of CREB-regulated genes in vivo, we also quantified transcript levels of several relevant CREB-regulated susceptibility genes in brain structures involved in the pathophysiology of mood disorders. Strikingly, we found the underexpression of primary components of the neurotrophin system: Bdnf and its cognate receptor TrkB, a marked decrease in the Nr4a family of transcription factors, implicated in neuroplasticity and associated with dopamine-related disorders, as well as in several other relevant CREB regulated genes. Moreover, neurochemical analysis revealed that Crtcl null mice presented alteration in prefrontal cortical monoamine turnover as well as in hippocampal and accumbal serotonin levels, similarly associated with mood disorders etiology and pharmacotherapy. Together, the present thesis supports the involvement of CRTC1 pathway hypofunction in the pathogenesis of mood disorders and specifically in pathological aggression, obesity and depression-related behavior comorbidities. Ultimately, CRTC1 may represent an interesting antidepressant, antiaggressive or mood stabilizer drug target candidate through the modulation of major CREB regulated susceptibility genes. Les troubles de l'humeur comptent parmi les maladies psychiatriques les plus prévalentes, psychosocialement débilitantes, chroniques et avec le plus grand risque de rechute. Malgré de considérable avancées dans leur caractérisation, la nature hétérogène des facteurs de susceptibilité et des symptômes présentés par les patients, semble justifier l'absence de traitement entraînant une rémission complète de la maladie. L'hypothèse de l'étiologie neurobiologique des troubles de l'humeur a évolué depuis la théorie des monoamines et des neurotrophines. Actuellement, elle tend à les englober dans un modèle polygénique épistatique induisant une déficience de la neuroplasticité des circuits impliqué dans la régulation des émotions. Par conséquent, il apparaît particulièrement relevant de caractériser des voies moléculaires impliquées dans la plasticité neuronale, communément altérées parmi les différents syndromes et symptômes des maladies de l'humeur, afin d'améliorer leur compréhension ainsi que de proposer de nouvelles cibles thérapeutiques potentielles. Le facteur de transcription CREB a été de façon répétée et cohérente impliqué dans les mécanismes à long terme de la plasticité neuronale, ainsi que dans la régulation de plusieurs gènes de susceptibilité aux maladies de l'humeur. De plus, une altération dans l'activité de CREB a été impliqué dans leur étiologie et pharmacothérapie. De façon intéressante, des résultats préliminaires sur la protéine récemment découverte CREB-regulated transcription coactivator 1 (CRTC1) ont indiqué que son activation était dépendante de l'activité neuronale, qu'il était un senseur du calcium et de l'AMPc, ainsi qu'un coactivateur de CREB requis et puissant impliqué dans les mécanismes de plasticité neuronale associés à la potentialisation à long terme. En outre, des résultats ont suggéré que le gène majeur de susceptibilité Bdnf est régulé par CRTC1. Ainsi, notre objectif a été d'investiguer un rôle éventuel de CRTC1 dans les maladies de l'humeur en générant et caractérisant une lignée de souris déficiente pour Crtcl, tant au niveau comportemental que moléculaire. De façon intéressante, leur caractérisation détaillée a révélé un profil comportemental reflétant de nombreux aspects des maladies de l'humeur incluant une altération des interactions sociales, une agression pathologique, l'obésité, un retard psychomoteur, une réponse émotionnelle au stress accrue, une diminution de la motivation sexuelle, et des comportements reliés à la dépression. Afin d'investiguer les mécanismes moléculaires sous- jacents cette altération du comportement, ainsi que l'implication de CRTC1 dans l'expression des gènes régulés par CREB in vivo, nous avons quantifié les niveaux de transcrits de plusieurs gènes de susceptibilité régulés par CREB et impliqués dans la physiopathologie des maladies de l'humeur. Remarquablement, nous avons trouvé la sous-expression de composants primordiaux du système neurotrophique: Bdnf et son récepteur TrkB, une diminution majeure de la famille des facteurs de transcription Nr4a, impliqués dans la neuroplasticité et associés à des désordres liés à la dopamine, ainsi que de nombreux autres gènes relevants régulés par CREB. De plus, une analyse neurochimique a révélé que les souris déficientes pour Crtcî présentent une altération du turn-over des monoamines du cortex préfrontal ainsi que des niveaux hippocampaux et accumbaux de sérotonine, associés de façon similaire dans l'étiologie et la pharmacothérapie des maladies de l'humeur. Vue dans son ensemble, la présente thèse supporte l'implication d'une sous-régulation de la voie de CRTCI dans la pathogenèse des maladies de l'humeur ainsi que dans la comorbidité de l'agression pathologique, l'obésité et la dépression. En conclusion, CRTCI pourrait représenter une cible médicamenteuse intéressante aux propriétés antidépressante, antiagressive ou stabilisatrice de l'humeur au travers de la modulation de gènes de susceptibilité majeurs régulés par CREB.
Resumo:
Transposable elements, as major components of most eukaryotic organisms' genomes, define their structural organization and plasticity. They supply host genomes with functional elements, for example, binding sites of the pleiotropic master transcription factor p53 were identified in LINE1, Alu and LTR repeats in the human genome. Similarly, in this report we reveal the role of zebrafish (Danio rerio) EnSpmN6_DR non-autonomous DNA transposon in shaping the repertoire of the p53 target genes. The multiple copies of EnSpmN6_DR and their embedded p53 responsive elements drive in several instances p53-dependent transcriptional modulation of the adjacent gene, whose human orthologs were frequently previously annotated as p53 targets. These transposons define predominantly a set of target genes whose human orthologs contribute to neuronal morphogenesis, axonogenesis, synaptic transmission and the regulation of programmed cell death. Consistent with these biological functions the orthologs of the EnSpmN6_DR-colonized loci are enriched for genes expressed in the amygdala, the hippocampus and the brain cortex. Our data pinpoint a remarkable example of convergent evolution: the exaptation of lineage-specific transposons to shape p53-regulated neuronal morphogenesis-related pathways in both a hominid and a teleost fish.
Resumo:
This paper presents 3-D brain tissue classificationschemes using three recent promising energy minimizationmethods for Markov random fields: graph cuts, loopybelief propagation and tree-reweighted message passing.The classification is performed using the well knownfinite Gaussian mixture Markov Random Field model.Results from the above methods are compared with widelyused iterative conditional modes algorithm. Theevaluation is performed on a dataset containing simulatedT1-weighted MR brain volumes with varying noise andintensity non-uniformities. The comparisons are performedin terms of energies as well as based on ground truthsegmentations, using various quantitative metrics.