475 resultados para Anticorps monoclonal chimère
Resumo:
The role of cytochrome P450 in the metabolism of dextromethorphan, amitriptyline, midazolam, S-mephenytoin, citalopram, fluoxetine and sertraline was investigated in rat and human brain microsomes. Depending on the parameters, the limit of quantification using gas chromatography-mass spectrometry methods was between 1.6 and 20 pmol per incubation, which generally contained 1500 microg protein. Amitriptyline was shown to be demethylated to nortriptyline by both rat and human microsomes. Inhibition studies using ketoconazole, furafylline, sulfaphenazole, omeprazole and quinidine suggested that CYP3A4 is the isoform responsible for this reaction whereas CYP1A2, CYP2C9, CYP2C19 and CYP2D6 do not seem to be involved. This result was confirmed by using a monoclonal antibody against CYP3A4. Dextromethorphan was metabolized to dextrorphan in rat brain microsomes and was inhibited by quinidine and by a polyclonal antibody against CYP2D6. Only the addition of exogenous reductase allowed the measurement of this activity in human brain microsomes. Metabolites of the other substrates could not be detected, possibly due to an insufficiently sensitive method. It is concluded that cytochrome P450 activity in the brain is very low, but that psychotropic drugs could undergo a local cerebral metabolism which could have pharmacological and/or toxicological consequences.
Resumo:
Background/Purpose: The primary treatment goals for gouty arthritis (GA) are rapid relief of pain and inflammation during acute attacks, and long-term hyperuricemia management. A post-hoc analysis of 2 pivotal trials was performed to assess efficacy and safety of canakinumab (CAN), a fully human monoclonal anti-IL-1_ antibody, vs triamcinolone acetonide (TA) in GA patients unable to use NSAIDs and colchicine, and who were on stable urate lowering therapy (ULT) or unable to use ULT. Methods: In these 12-week, randomized, multicenter, double-blind, double-dummy, active-controlled studies (_-RELIEVED and _-RELIEVED II), patients had to have frequent attacks (_3 attacks in previous year) meeting preliminary GA ACR 1977 criteria, and were unresponsive, intolerant, or contraindicated to NSAIDs and/or colchicine, and if on ULT, ULT was stable. Patients were randomized during an acute attack to single dose CAN 150 mg s.c. or TA 40 mg i.m. and were redosed "on demand" for each new attack. Patients completing the core studies were enrolled into blinded 12-week extension studies to further investigate on-demand use of CAN vs TA for new attacks. The subpopulation selected for this post-hoc analysis was (a) unable to use NSAIDs and colchicine due to contraindication, intolerance or lack of efficacy for these drugs, and (b) currently on ULT, or contraindication or previous failure of ULT, as determined by investigators. Subpopulation comprised 101 patients (51 CAN; 50 TA) out of 454 total. Results: Several co-morbidities, including hypertension (56%), obesity (56%), diabetes (18%), and ischemic heart disease (13%) were reported in 90% of this subpopulation. Pain intensity (VAS 100 mm scale) was comparable between CAN and TA treatment groups at baseline (least-square [LS] mean 74.6 and 74.4 mm, respectively). A significantly lower pain score was reported with CAN vs TA at 72 hours post dose (1st co-primary endpoint on baseline flare; LS mean, 23.5 vs 33.6 mm; difference _10.2 mm; 95% CI, _19.9, _0.4; P_0.0208 [1-sided]). CAN significantly reduced risk for their first new attacks by 61% vs TA (HR 0.39; 95% CI, 0.17-0.91, P_0.0151 [1-sided]) for the first 12 weeks (2nd co-primary endpoint), and by 61% vs TA (HR 0.39; 95% CI, 0.19-0.79, P_0.0047 [1-sided]) over 24 weeks. Serum urate levels increased for CAN vs TA with mean change from baseline reaching a maximum of _0.7 _ 2.0 vs _0.1 _ 1.8 mg/dL at 8 weeks, and _0.3 _ 2.0 vs _0.2 _ 1.4 mg/dL at end of study (all had GA attack at baseline). Adverse Events (AEs) were reported in 33 (66%) CAN and 24 (47.1%) TA patients. Infections and infestations were the most common AEs, reported in 10 (20%) and 5 (10%) patients treated with CAN and TA respectively. Incidence of SAEs was comparable between CAN (gastritis, gastroenteritis, chronic renal failure) and TA (aortic valve incompetence, cardiomyopathy, aortic stenosis, diarrohea, nausea, vomiting, bicuspid aortic valve) groups (2 [4.0%] vs 2 [3.9%]). Conclusion: CAN provided superior pain relief and reduced risk of new attack in highly-comorbid GA patients unable to use NSAIDs and colchicine, and who were currently on stable ULT or unable to use ULT. The safety profile in this post-hoc subpopulation was consistent with the overall _-RELIEVED and _-RELIEVED II population.
Resumo:
Treatment of B cell lymphoma patients with MoAbs specific for the common B cell marker (CD20) has shown a good overall response rate, but the number of complete remissions is still very low. The use of MoAbs coupled to radioisotopes can improve the results, but induces undesirable myelodepression. As an alternative, we proposed to combine the specificity of MoAbs with the immunogenicity of T cell epitopes. We have previously shown that an anti-Ig lambda MoAb coupled to an MHC class II-restricted universal T cell epitope peptide P2 derived from tetanus toxin induces efficient lysis of a human B cell lymphoma by a specific CD4+ T cell line. Here we demonstrate that the antigen presentation properties of the MoAb peptide conjugate are maintained using a MoAb directed against a common B cell marker, CD19, which is known to be co-internalized with the B cell immunoglobulin receptor. In addition, we provide evidence that B cell lysis is mediated by the Fas apoptosis pathway, since Fas (CD95), but not tumour necrosis factor receptor (TNFr) or TNF-related receptors, is expressed by the target B cells, and FasL, but not perforin, is expressed by the effector T cells. These results show that B cell lymphomas can be 'foreignized' by MoAb-peptide P2 conjugates directed against the common B cell marker CD19 and eliminated by peptide P2-specific CD4+ T cells, via the ubiquitous Fas receptor. This approach, which bridges the specificity of passive antibody therapy with an active T cell immune response, may be complementary to and more efficient than the present therapy results with unconjugated chimeric anti-CD20 MoAbs.
Resumo:
The expected therapeutic gain of a combined radioimmunotherapy (RIT) with conventional radiotherapy (RT) would be a synergy of tumor irradiation, provided that toxic, dose-limiting side effects concern different organs. We have shown in a model of subcutaneous human colon cancer transplants in nude mice that RIT with 131I-labeled anti-CEA antibody fragments combined with fractionated RT give an additive therapeutic effect without increase of side effects. A second study of different timing schedules of RIT and RT has shown that close association of both therapies without delay is more efficient than a therapy with a treatment-free interval of two weeks. In a new model of human colon cancer liver metastases in nude mice, early treatment with RIT and with RT has been curative, whereas therapies initiated later were less efficient, suggesting that the combined therapy is likely to be more efficient in an adjuvant situation after surgery. At the clinical level, six patients with limited liver metastatic disease from colorectal cancer were treated with RIT using 200 mCi 131I-labeled anti-CEA MAb F(ab')2 fragments combined with fractionated external beam RT of 20 Gy to the entire liver. As expected, spontaneously reversible bone marrow toxicity grade 3 to 4 and reversible liver toxicity grade 1 to 3 have been observed. By computerized tomography, three patients showed stable disease and one patient partial remission, whereas two patients had progressive disease. In conclusion, animal experiments have shown a clear advantage of combined RT and RIT, and the clinical study shows the feasibility of such a therapy in patients with colorectal cancer liver metastases.
Resumo:
A recombinant baculovirus encoding a single-chain murine major histocompatibility complex class I molecule in which the first three domains of H-2Kd are fused to beta 2-microglobulin (beta 2-m) via a 15-amino acid linker has been isolated and used to infect lepidopteran cells. A soluble, 391-amino acid single-chain H-2Kd (SC-Kd) molecule of 48 kDa was synthesized and glycosylated in insect cells and could be purified in the absence of detergents by affinity chromatography using the anti-H-2Kd monoclonal antibody SF1.1.1.1. We tested the ability of SC-Kd to bind antigenic peptides using a direct binding assay based on photoaffinity labeling. The photoreactive derivative was prepared from the H-2Kd-restricted Plasmodium berghei circumsporozoite protein (P.b. CS) peptide 253-260 (YIPSAEKI), a probe that we had previously shown to be unable to bind to the H-2Kd heavy chain in infected cells in the absence of co-expressed beta 2-microglobulin. SC-Kd expressed in insect cells did not require additional mouse beta 2-m to bind the photoprobe, indicating that the covalently attached beta 2-m could substitute for the free molecule. Similarly, binding of the P.b. CS photoaffinity probe to the purified SC-Kd molecule was unaffected by the addition of exogenous beta 2-m. This is in contrast to H-2KdQ10, a soluble H-2Kd molecule in which beta 2-m is noncovalently bound to the soluble heavy chain, whose ability to bind the photoaffinity probe is greatly enhanced in the presence of an excess of exogenous beta 2-m. The binding of the probe to SC-Kd was allele-specific, since labeling was selectively inhibited only by antigenic peptides known to be presented by the H-2Kd molecule.
Resumo:
We have recently shown that immunophotodetection of human colon carcinomas in nude mice and in patients is possible by using anti-carcinoembryonic antigen monoclonal antibodies (MAb) coupled to fluorescein. The most common clinical application of photodiagnosis has been for the detection of squamous cell carcinomas (SCC) in the upper respiratory tract, but the free dyes used have a poor tumor selectivity. We selected the known MAb E48 directed against SCC and coupled it to a fluorescent dye: indopentamethinecyanin (indocyanin). This dye has an advantage over fluorescein in that it emits a more penetrating fluorescent red signal at 667 nm after excitation with a laser ray of 640 nm. In vitro, an conjugate with an indocyanin:MAb molar ratio of 2, and an additional trace labeling with 125I, showed more than 80% of binding to cells from the SCC line A431. In vivo, when injected i.v. into nude mice bearing xenografts of the same carcinoma line, the MAb E48-(indocyanin)2 conjugate was almost as efficient as the unconjugated MAb E48 in terms of specific tumor localization: 15% of the injected dose per g of tumor at 24 h after injection and a tumor:overall normal tissue ratio of 6-8. There was no selective tumor localization of an irrelevant IgG1-(indocyanin)2 conjugate. Immunophotodetection of the s.c. SCC xenografts on mice given injections of 100 micrograms of MAb E48-(indocyanin), conjugate (representing 1 microgram of indocyanin) was performed at 24 h. Upon laser irradiation, clearly detectable red fluorescence from the indocyanin-MAb conjugate was observed specifically in the SCC xenografts across the mouse skin. In comparison, injection of 100 micrograms of a MAb E48 coupled to 2 micrograms of fluorescein gave a specific green fluorescence signal in the tumor xenografts, which was detectable, however, only after removing the mouse skin. Injection i.v. of a 15 times higher amount of free indocyanin (15 micrograms) gave a diffuse red fluorescence signal all over the mouse body with no definite increase in intensity in the tumor, indicating a lack of tumor selectivity of the free dye. The results demonstrate the possibility of broadening and improving the efficiency of tumor immunophotodiagnosis by coupling to a MAb directed against SCC, a fluorescent dye absorbing and emitting at higher wavelength than fluorescein, and thus having deeper tissue penetration and lower tissue autofluorescence. Such a demonstration opens the way to a new form of clinical immunophotodiagnosis and possibly to the development of a more specific approach to phototherapy of early bronchial carcinomas.
Resumo:
Recent progress in cancer therapy has dramatically modified the course and prognosis of some malignancies. Chemo and radiotherapy, along with newer targeted treatments, are given to control symptoms, postpone relapse, or attempt cure. However, many of these regimens are associated with adverse cardiovascular effects such as impaired left ventricular function, myocardial ischemia, hypertension, and arrhythmia. Awareness of potential cardiotoxicity is important, as it may allow practitioners to recognize early signs of cardiac complications and to adapt therapy in order to limit detrimental effects. Diagnosis of cardiovascular complications may iustify the introduction of cardiologic therapies, and may require the reassessment of risk/benefit ratios related to specific cancer therapy. Screening and follow up strategies are proposed.
Resumo:
Microtubule-associated protein 1b, previously also referred to as microtubule-associated protein 5 or microtubule-associated protein 1x, is a major component of the juvenile cytoskeleton, and is essential during the early differentiation of neurons. It is required for axonal growth and its function is influenced by phosphorylation. The distribution of microtubule-associated protein 1b in kitten cerebellum and cortex during postnatal development was studied with two monoclonal antibodies. Hybridoma clone AA6 detected a non-phosphorylated site, while clone 125 detected a site phosphorylated by casein-kinase II. On blots, both monoclonal antibodies stained the same two proteins of similar molecular weights, also referred to as microtubule-associated protein 5a and 5b. Antibody 125 detected a phosphorylated epitope on both microtubule-associated protein 1b forms; dephosphorylation by alkaline phosphatase abolished the immunological detection. During development of cat cortex and cerebellum, AA6 stained the perikarya and dendrites of neurons during their early differentiation, and especially labelled newly generated axons. The staining decreased during development, and axonal staining was reduced in adult tissue. In contrast to previous reports which demonstrated that antibodies against phosphorylated microtubule-associated protein 1b label exclusively axons, antibody 125 also localized microtubule-associated protein 1b in cell bodies and dendrites, even in adulthood. Some nuclear staining was observed, indicating that a phosphorylated form of microtubule-associated protein 1b may participate in nuclear function. These results demonstrate that microtubule-associated protein 1b is subject to CK2-type phosphorylation throughout neuronal maturation and suggest that phosphorylation of microtubule-associated protein 1b may participate in juvenile and mature-type microtubule functions throughout development.
Resumo:
This study describes a form of partial agonism for a CD8+ CTL clone, S15, in which perforin-dependent killing and IFN-gamma production were lost but Fas (APO1 or CD95)-dependent cytotoxicity preserved. Cloned S15 CTL are H-2Kd restricted and specific for a photoreactive derivative of the Plasmodium berghei circumsporozoite peptide PbCS 252-260 (SYIPSAEKI). The presence of a photoactivatable group in the epitope permitted assessment of TCR-ligand binding by TCR photoaffinity labeling. Selective activation of Fas-dependent killing was observed for a peptide-derivative variant containing a modified photoreactive group. A similar functional response was obtained after binding of the wild-type peptide derivative upon blocking of CD8 participation in TCR-ligand binding. The epitope modification or blocking of CD8 resulted in an > or = 8-fold decrease in TCR-ligand binding. In both cases, phosphorylation of zeta-chain and ZAP-70, as well as calcium mobilization were reduced close to background levels, indicating that activation of Fas-dependent cytotoxicity required weaker TCR signaling than activation of perforin-dependent killing or IFN-gamma production. Consistent with this, we observed that depletion of the protein tyrosine kinase p56(lck) by preincubation of S15 CTL with herbimycin A severely impaired perforin- but not Fas-dependent cytotoxicity. Together with the observation that S15 CTL constitutively express Fas ligand, these results indicate that TCR signaling too weak to elicit perforin-dependent cytotoxicity or cytokine production can induce Fas-dependent cytotoxicity, possibly by translocation of preformed Fas ligand to the cell surface.
Resumo:
We are currently experiencing a key period in the management of patients with relapsing remitting multiple sclerosis. The application of new criteria allows early diagnosis, thus at a stage when the available immune treatments are the most likely to show a good efficacy. The therapeutic offer is expanding but its complexity too. It is thus important, for a given patient, to assess as precisely as possible the degree of severity of his/her disease, in order to give the drug with the optimal risk/benefit ratio.
Resumo:
Aim of the present article was to perform three-dimensional (3D) single photon emission tomography-based dosimetry in radioimmunotherapy (RIT) with (90)Y-ibritumomab-tiuxetan. A custom MATLAB-based code was used to elaborate 3D images and to compare average 3D doses to lesions and to organs at risk (OARs) with those obtained with planar (2D) dosimetry. Our 3D dosimetry procedure was validated through preliminary phantom studies using a body phantom consisting of a lung insert and six spheres with various sizes. In phantom study, the accuracy of dose determination of our imaging protocol decreased when the object volume decreased below 5 mL, approximately. The poorest results were obtained for the 2.58 mL and 1.30 mL spheres where the dose error evaluated on corrected images with regard to the theoretical dose value was -12.97% and -18.69%, respectively. Our 3D dosimetry protocol was subsequently applied on four patients before RIT with (90)Y-ibritumomab-tiuxetan for a total of 5 lesions and 4 OARs (2 livers, 2 spleens). In patient study, without the implementation of volume recovery technique, tumor absorbed doses calculated with the voxel-based approach were systematically lower than those calculated with the planar protocol, with average underestimation of -39% (range from -13.1% to -62.7%). After volume recovery, dose differences reduce significantly, with average deviation of -14.2% (range from -38.7.4% to +3.4%, 1 overestimation, 4 underestimations). Organ dosimetry in one case overestimated, in the other underestimated the dose delivered to liver and spleen. However, both for 2D and 3D approach, absorbed doses to organs per unit administered activity are comparable with most recent literature findings.
Resumo:
The role of ubiquitin in development of the mammalian brain has been studied using a monoclonal antibody, RHUb1, specific for ubiquitin. Immunodevelopment of western blots of homogenate samples of the cerebral cortex, hippocampus and cerebellum prepared from animals of known postnatal age show marked developmental changes in conjugate level. Striking decreases in the level of a prominent conjugate of molecular weight 22,000, which is identified as ubiquitinated histone, are observed during the first postnatal week in the cerebral cortex and hippocampus, but not the cerebellum. A marked overall developmental decrease in the level of high-molecular-weight (> 40,000) ubiquitin conjugates which occurs predominantly during the third, but also the fourth, postnatal week is observed in all three regions. Immunocytochemical data obtained with the RHUb1 antibody show intense staining of neuronal perikarya, nuclei and dendrites in early postnatal cerebral cortex and hippocampus. Staining of pyramidal cell perikarya and dendrites is particularly prominent. The intensity of dendritic staining, particularly for the cerebral cortex, shows a striking decrease after postnatal day 14 and only faint dendritic staining is observed in the adult. In early postnatal cerebellum, immunoreactivity is predominantly nuclear, though some staining of the proximal regions of Purkinje cell dendrites is observed between postnatal days 4 and 19. As with the cerebral cortex and hippocampus, most of the ubiquitin reactivity is lost in adult animals. The loss of dendritic staining, particularly in the cerebral cortex, correlates with the decrease in the level of high-molecular-weight ubiquitin conjugates observed on the western blots. Immunodevelopment of western blots of a range of subcellular fractions prepared from developing rat forebrain shows that the developmental decrease in the level of high-molecular-weight ubiquitin conjugates is not uniform for all fractions. The decrease in conjugate level is most marked for the cell-soluble, mitochondrial and detergent-insoluble cytoskeletal fractions. Taken overall, the data suggest a role for ubiquitin in dendrite outgrowth and arborization, loss of dendritic ubiquitin immunoreactivity correlating with completion of these processes.
Resumo:
The concept of antibody-mediated targeting of antigenic MHC/peptide complexes on tumor cells in order to sensitize them to T-lymphocyte cytotoxicity represents an attractive new immunotherapy strategy. In vitro experiments have shown that an antibody chemically conjugated or fused to monomeric MHC/peptide can be oligomerized on the surface of tumor cells, rendering them susceptible to efficient lysis by MHC-peptide restricted specific T-cell clones. However, this strategy has not yet been tested entirely in vivo in immunocompetent animals. To this aim, we took advantage of OT-1 mice which have a transgenic T-cell receptor specific for the ovalbumin (ova) immunodominant peptide (257-264) expressed in the context of the MHC class I H-2K(b). We prepared and characterized conjugates between the Fab' fragment from a high-affinity monoclonal antibody to carcinoembryonic antigen (CEA) and the H-2K(b) /ova peptide complex. First, we showed in OT-1 mice that the grafting and growth of a syngeneic colon carcinoma line transfected with CEA could be specifically inhibited by systemic injections of the conjugate. Next, using CEA transgenic C57BL/6 mice adoptively transferred with OT-1 spleen cells and immunized with ovalbumin, we demonstrated that systemic injections of the anti-CEA-H-2K(b) /ova conjugate could induce specific growth inhibition and regression of well-established, palpable subcutaneous grafts from the syngeneic CEA-transfected colon carcinoma line. These results, obtained in a well-characterized syngeneic carcinoma model, demonstrate that the antibody-MHC/peptide strategy can function in vivo. Further preclinical experimental studies, using an anti-viral T-cell response, will be performed before this new form of immunotherapy can be considered for clinical use.
Resumo:
Rituximab is an effective treatment of rheumatoid arthritis (RA), which has been approved for the treatment of moderate to severe disease in patients with an inadequate response to anti-TNF therapies. Rituximab differs from other available biological agents for RA by way of its unique mode of action and unrivalled long dosing interval. The efficacy of rituximab subsides progressively over time and re-therapy is generally required to maintain long term disease control. The timing of re-treatment is currently not well established and varies widely in clinical practice. The present document is a concise recommendation regarding re-treatment with rituximab, based on validated outcomes such as the DAS28 and the EULAR response criteria. The recommendation was established through consensus between practitioners familiar with rituximab therapy in RA. Optimisation of the rituximab re-treatment schedule may improve patient outcomes and balance risks and benefits for the individual patient.