336 resultados para glycosidation sur support solide
Resumo:
Abstract : Host-Cell Factor 1 (HCF-1) was first discovered in the study of the herpes simplex virus (HSV) infection. HCF-1 is one of the two cellular proteins that compose the VP16-induced complex, a key activator of HSV lytic infection. lncleed, when HSV infects human cells, it is able to enter two modes of infection: lytic or latent. The V`P16-induced complex promotes the lytic mode and in so doing the virus targets important cellular regulatory proteins, such as HCF-1, to manipulate the status of the infected cell. Indeed, HCF-1 regulates human cell proliferation and the cell cycle at different steps. In human, HCF-1 is unusual in that it undergoes a process of proteolytic maturation that results from cleavages at six centrally located 26 amino acid repeats called HCF-1pro repeats. This generates a heterodimeric complex of stably associated amino- (HCF-1n) and carboxy- (HCF-1c) terminal subunits. The absence of the HCF-1 N or HCF-1; subunit leads predominantly to either G1 or M phase defects, respectively. We have hypothesized that HCF-1 forms a heterodimeric complex to permit communication between the two subunits of HCF-1 involved in regulating different phases of the cell cycle. Indeed, there is evidence for such inter-subunit communication because a point mutation called P134S in the HCF-1N subunit in the temperature-sensitive hamster cell line tsBN67 causes, addition to G1- phase defects associated with the HCF-1n subunit, M-phase defects similar to the defects seen upon loss of HCF-1 function. Furthermore, inhibition of the proteolytic maturation of HCF-1 by deletion of the six HCF-1pro repeats (HCF-1Aimo) also leads to M-phase defects, specifically cytokinesis defects leading to binucleation, indicating that there is loss of HCF-15 function in the absence of HCF-1 maturation. I demonstrate that individual point mutations in each of the six HCF-1pro repeats that prevent HCF-1 proteolytic maturation also lead to binucleation; however, this defect can be latgely rescued by the presence of just one HCF-1pRO sequence in I-ICF»1. These results argue that processing itself is important for the HCF-1g function. In fact, until now, the hypothesis was that the proteolytic processing per se is more important for HCF-1C function than the proteolytic processing region. But I show that processing per se is not sufticient to rescue multinucleation, but that the HCF-lpm sequence itself is crucial. This discovery leads to the conclusion that the I-ICF-1pRO repeats have an additional function important for HCF-le function. From the studies of others, one potential function of the HCF-lrxo tepeats is as a binding site for O-link NAcetyl glycosamine tansferase (OGT) to glycosylate an HCF-1n-sunbunit region called the Basic region. This new function suggests the Basic region of HCF-1n is also implicated in the communication between the two subunits. This inter-subunit communication was analyzed in more detail with the studies of the Pl34S mutation and the residues 382-450 region of HCF-l that when removed prevents HCF-l subunit association. I demonstrate that the point mutation also leads to a binucleation defect in Hela cells as well as in the tsBN67 cells. In addition, the effect of this mutation on the regulation of HCF-1c activity seems to interfere with that of the HCF-lpgg repeats because the sum of the deletion of the proteolytic processing region and the point mutation surprisingly leads to re-establishment of correct cytokinesis. The study of the 382-450 HCF-lN region also yielded surprising results. This region important for the association of the two subunits is also important for both HCF-1c function in M phase and G1 phase progression. Thus, I have discovered two main functions of this region: its role in the regulation of HCF-lc function in M phase and its involvement in the regulation of G1/S phase ?- an HCF-1n function. These results support the importance of inter-subunit communication in HCF-1 functions. My research illuminates the understanding of the interaction of the two subunits by showing that the whole HCF-1n subunit is involved in the inter-subunit communication in order to regulate HCF-1c function. For this work, I was concentrated on the study of cytokinesis; the first phenotype showing the role of HCF-1c in the M phase. Then, I extended the study of the M phase with analysis of steps earlier to cytokinesis. Because some defects in the chromosome segregation was already described in the absence of HCF-1, I decided to continue the study of M phase by checking effects on the chromosome segregation. I showed that the HCF-1n subunit and HCF-1pro repeats are both important for this key step of M phase. I show that the binucleation phenotype resulting from deletion or mutation in HCF-1pro repeats, Pl34S point mutation or the lack of the region 382-450 are correlated with micronuclei, and chromosome segregation and alignment defects. This suggests that HCF«lç already regulates M phase during an early step and could be involved in the complex regulation of chromosome segregation. Because one of the major roles of HCF-1 is to be a transcription regulator, I also checked the capacity of HCF-1 to bind to the chromatin in my different cell lines. All my recombinant proteins can bind the chromatin, except for, as previously described, the HCF-1 with the P134S point mutation, This suggests that the binding of HCF-1 to the chromatin is not dependant to the Basic and proteolytic regions but more to the Kelch domain. Thus, if the function of HCF-ig in M phase is dependant to its chromatin association, the intercommunication and the proteolytic region are not involved in the ability to bind to the chromatin but more to bind to the right place of the chromatin or to be associated with the co-factors. Résumé : L'étude de l'infection par le virus Herpes Simplex (HSV) a permis la découverte de la protéine HCF-1 (Host-Cell Factor). HCF-1 est une des protéines cellulaires qui font partie du complexe induit par VP16 ; ce complexe est la clef pour l'activation de la phase lytique de HSV. Afin de manipuler les cellules infectées, le complexe induit pas le VPIG devrait donc cibler les protéines importantes pour la régulation cellulaire, telles que la protéine HCF-1. Cette dernière s'avère donc être un senseur pour la cellule et devrait également jouer un rôle de régulation lors des différentes phases du cycle cellulaire. Chez l'humain, HCF-1 a la particularité de devoir passer par une phase de maturation pour devenir active. Lors de cette maturation, la protéine subit une coupure protéolytique au niveau de six répétitions composées de 26 acides aminés, appelé HCF-1pro repeats. Cette coupure engendre la formation d'un complexe formé de deux sous-unités, HCF-1n et HCF-1c, associées l'une à l'autre de façon stable. Enlever la sous-unité HCF-IN ou C entraîne respectivement des défauts dans la phase G1 et M. Nous pensons donc que HCF-1 forme un complexe hétérodimérique afin de permettre la communication entre les molécules impliquées dans la régulation des différentes phases du cycle cellulaire. Cette hypothèse est déduite suite à deux études: l'une réalisée sur la lignée cellulaire tsBN67 et l'autre portant sur l'inhibition de la maturation protéolytique. La lignée cellulaire tsBN67, sensible à la température, porte la mutation Pl 345 dans la sous-unité HCF-1n. Cette mutation, en plus d'occasionner des défauts dans la phase G1 (défauts liés à la sous-unité HCF-1N), a aussi pour conséquence d'entrainer des défauts dans la phase M, défauts similaires à ceux dus a la perte de la sous-unité HCF-1c. Quant à la maturation protéolytique, l'absence de la région de la protéolyse provoque la binucléation, défaut lié à la cytokinèse, indiquant la perte de la fonction de la sous-unité HCF-1c. Au cours de ma thèse, j'ai démontré que des mutations dans les HCF-1=no repeats, qui bloquent la protéolyse, engendrent la binucléation ; cependant ce défaut peut être corrigé pas l'ajout d'un HCF-1pro repeat dans un HCF-1 ne contenant pas la région protéolytique. Ces résultats soutiennent l'idée que la région protéolytique est importante pour le bon fonctionnement de HCF-1c. En réalité jusqu'a maintenant on supposait que le mécanisme de coupure était plus important que la région impliquée pour la régulation de la fonction de HCF-1;. Mais mon étude montre que la protéolyse n'est pas suffisante pour éviter la binucléation ; en effet, les HCF-1pro repeats semblent jouer le rôle essentiel dans le cycle cellulaire. Cette découverte conduit à la conclusion que les HCF-1pro repeats ont sûrement une fonction autre qui serait cruciale pour la foncton de HCF-1c. Une des fonctions possibles est d'être le site de liaison de l'O-linked N-acetylglucosamine transférase (OGT) qui glycosylerait la région Basique de HCF-1n. Cette nouvelle fonction suggère que la région Basique est aussi impliquée dans la communication entre les deux sous- unités. L'intercommunication entre les deux sous-unités ai été d'ailleurs analysée plus en détail dans mon travail à travers l'étude de la mutation Pl34S et de la région 382-450, essentielle pour l'association des deux sous»unités. J'ai ainsi démontré que la mutation P134S entraînait aussi des défauts dans la cytokinése dans la lignée cellulaire Hela, de plus, son influence sur HCF-1c semble interférer avec celle de la région protéolytique. En effet, la superposition de ces deux modifications dans HCF-1 conduit au rétablissement d'une cytokinése correcte. Concernant la région 382 à 450, les résultats ont été assez surprenants, la perte de cette région provoque l'arrêt du cycle en G1 et la binucléation, ce qui tend à prouver son importance pour le bon fonctionnement de HCF-1n et de HCF-1c. Cette découverte appuie par conséquent l'hypotl1èse d'une intercommunicatzion entre les deux sous-unités mettant en jeu les différentes régions de HCF-1n. Grâce à mes recherches, j'ai pu améliorer la compréhension de l'interaction des deux sous-unités de HCF-1 en montrant que toutes les régions de HCF-1n sont engagées dans un processus d'intercommunication, dont le but est de réguler l'action de HCF-1c. J'ai également mis en évidence une nouvelle étape de la maturation de HCF-1 qui représente une phase importante pour l'activation de la fonction de HCF-1c. Afin de mettre à jour cette découverte, je me suis concentrée sur l'étude de l'impact de ces régions au niveau de la cytokinése qui fut le premier phénotype démontrant le rôle de HCF-1c dans la phase M. A ce jour, nous savons que HCF-1c joue un rôle dans la cytokinèse, nous ne connaissons pas encore sa fonction précise. Dans le but de cerner plus précisément cette fonction, j'ai investigué des étapes ultérieures ai la cytokinèse. Des défauts dans la ségrégation des chromosomes avaient déjà été observés, ai donc continué l'étude en prouvant que HCF-1n et les HCF-1pro repeats sont aussi importants pour le bon fonctionnement de cette étape clef également régulée par HCF-1c. J' ai aussi montré que la région 382-450 et la mutation P134S sont associées à un taux élevé de micronoyaux, de défauts dans la ségrégation des chromosomes. L'une des fonctions principales de HCF-1 étant la régulation de la transcription, j'ai aussi contrôlé la capacité de HCF-1 à se lier à la chromatine après insertion de mutations ou délétions dans HCF-1n et dans la région protéolytique. Or, à l'exception des HCF-1 contenant la mutation P134S, la sous-unité HCF-1c des HCF-1 tronquées se lie correctement à la chromatine. Cette constatation suggère que la liaison entre HCF-1c et chromatine n'est pas dépendante de la région Basique ou Protéolytique mais peut-être vraisemblablement de la région Kelch. Donc si le rôle de HCF-1c est dépendant de sa capacité â activer la transcription, l'intercommunication entre les deux sous-unités et la région protéolytique joueraient un rôle important non pas dans son habileté à se lier à la chromatine, mais dans la capacité de HCF-1 à s'associer aux co-facteurs ou à se placer sur les bonnes régions du génome.
Resumo:
(Résumé de l'ouvrage) Il dualismo della vita dell'esegeta a 30 anni dalla ricostruzione di Pierre Nautin, tra documentazione e interpretazione.
Resumo:
Le neuroblastome (NB) est la tumeur maligne solide extra-crânienne la plus fréquente chez le jeune enfant. L'évolution clinique est très hétérogène, et les NBs de haut risque échappent encore aux traitements les plus agressifs. Diverses études ont montré que les chimiokines et leurs récepteurs, particulièrement l'axe CXCR4/CXCL12, sont impliqués dans la progression tumorale. Dans le NB, l'expression de CXCR4 est corrélée à un pronostic défavorable. De récentes études ont identifié l'expression d'un autre récepteur, CXCR7, présentant une forte affinité pour le ligand CXCL12. Cependant, son implication potentielle dans l'agressivité des NBs reste encore inconnue. Notre étude a pour objectif d'analyser le rôle de CXCR7 dans le comportement malin du NB, et son influence sur la fonctionnalité de l'axe CXCR4/CXCL12. Les profils d'expression de CXCR7 et CXCL12 ont d'abord été évalués sur un large échantillonnage de tissus de NB, incluant des tissus de tumeurs primaires et de métastases, provenant de 156 patients. CXCL12 est fortement détecté dans les vaisseaux et le stroma des tumeurs. Contrairement à CXCR4, CXCR7 n'est que très faiblement exprimé par les tumeurs indifférenciées. Néanmoins, l'expression de CXCR7 augmente dans les tumeurs matures, et se trouve spécifiquement associée aux cellules neurales différentiées, telles que les cellules ganglionnaires. L'expression de CXCR7 est faiblement détectée dans un nombre réduit de lignées de NB, mais peut-être induite suite à des traitements avec des agents de différenciation in vitro. La surexpression de CXCR7, CXCR4 et une combinaison des deux récepteurs dans les lignées IGR-NB8 et SH-SY5Y a permis l'analyse de leur fonction respective. En réponse à leur ligand commun, chaque récepteur induit l'activation de la voie ERK 1/2, mais pas celle de la voie Akt. Contrairement à CXCR4, l'expression exogène de CXCR7 réduit fortement la prolifération des cellules de NB in vitro, et in vivo dans un modèle d'injection sous-cutanée de. souris immunodéprimées. CXCR7 altère également la migration des cellules induite par l'axe CXCR4/CXCL12. De plus, l'utilisation d'un modèle orthotopique murin a démontré que la croissance tumorale induite par CXCR4 peut être fortement retardée lorsque les deux récepteurs sont co-exprimés dans les cellules de NB. Aucune induction de métastases n'a pu être observée dans ce modèle. Cette étude a permis d'identifier un profil d'expression opposé et des rôles distincts pour CXCR7 et CXCR4 dans le NB. En effet, contrairement à CXCR4, CXCR7 présente des propriétés non tumorigéniques et peut être associé au processus de différenciation du NB. De plus, nos analyses suggèrent que CXCR7 peut réguler les mécanismes induits par CXCR4. Ces données ouvrent donc de nouvelles perspectives de recherche quant au rôle de l'axe CXCR7/CXCR4/CXCL12 dans la biologie des NBs. - Neuroblastoma (NB) is a typical childhood and heterogeneous neoplasm for which efficient targeted therapy for high-risk tumours is not yet identified. The chemokine CXCL12, and its receptors CXCR4 and CXCR7 have been involved in tumour progression and dissemination in various cancer models. In the context of NB, CXCR4 expression is associated to undifferentiated tumours and poor prognosis, while the role of CXCR7, the recently identified second CXCL12 receptor, has not yet been elucidated. In this report, CXCR7 and CXCL12 expression were evaluated using a tissue micro-array (TMA) including 156 primary and 56 metastatic NB tissues. CXCL12 was found to be highly associated to NB vascular and stromal structures. In opposite to the CXCR4 expression pattern, the neural-associated CXCR7 expression was extremely low in undifferentiated tumours, while its expression increased in maturated tissues and was specifically associated to the differentiated neural tumour cells. As determined by RT-PCR, CXCR7 expression was only found in a minority of NB cell lines. Moreover, its expression in two CXCR7-negative NB cell lines was further induce upon treatment with differentiation agents in vitro. The relative roles of the two CXCL12 receptors was further assessed by overexpressing individual CXCR7 or CXCR4 receptors, or a combination of both, in the IGR-NB8 and SH-SY5Y NB cell lines. In vitro functional analyses indicated that, in response to their common ligand, both receptors induced activation of ERK 1/2 cascade, but not Akt signaling pathway. CXCR7 strongly reduced in vitro growth, in contrast to CXCR4. Sub-cutaneous implantations of CXCR7-expressing NB cells showed that CXCR7 also drastically reduced in vivo growth. Moreover, CXCR7 impaired CXCR4-mediated chemotaxis, and altered CXCR4-mediated growth when CXCR4/CXCR7-expressing NB cells were engrafted orthotopically in mouse adrenal gland, a CXCL12-producing environment. In such model, CXCR7 alone, or in association with CXCR4, did not induce NB cell metastatic dissemination. In conclusion, the CXCL12 receptors, CXCR7 and CXCR4, revealed opposite expression patterns and distinct functional roles in NB. While CXCR4 favours NB growth and chemotaxis, CXCR7 elicits anti-tumorigenic properties and may be associated with NB differentiation. Importantly, CXCR7 may act as a negative modulator of CXCR4 signaling, further opening new research perspectives for the role of the global CXCR7/CXCR4/CXCL12 axis in NB.