366 resultados para glioblastoma, WIF1, senescence, autophagy, Wnt pathway


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The discovery that astrocytes possess a nonelectrical form of excitability (calcium excitability) that leads to the release of chemical transmitters, an activity called gliotransmission, indicates that these cells may have additional important roles in brain function. Elucidating the stimulussecretion coupling leading to the exocytic release of chemical transmitters (such as glutamate, Bezzi et al., Nature Neurosci, 2004) may therefore clarify i) whether astrocytes represent in full a new class of secretory cells in the brain and ii) whether they can participate to the fast brain signaling in the brain. We have recently discovered the existence in astrocytes of functional sub-membrane microdomains of calcium release from the internal stores in response to mGluR5 activation (Marchaland et al., J of Neurosci., 2008). Such sub-plasma membrane calcium microdomains control exocytosis of astrocytic glutamate signaling to neurons. Homer proteins are scaffold proteins controlling calcium signaling in different cellular microdomains, including dendritic spines in neurons (Sala et al., J of Neurosci., 2005). Thus, similarly to dendritic pines, Homer1 could be implicated in the coupling between astrocytic mGluR5 and IP3Rs on the ER. Here, by using a recently developed approach for studying vesicle recycling dynamics at synapses (Voglmaier et al., Neuron, 2006; Balaji and Ryan, PNAS, 2007) combined with epifluorescence and total internal reflection fluorescence (TIRF) imaging, we investigated the involvement of Homer1 proteins in the calcium dependent stimulus-secretion coupling leading glutamate exocytosis of synaptic-like microvesicles (SLMVs) in astrocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Enhanced recovery protocols have been proven to decrease complications and hospital stay following elective colorectal surgery. However, these principles have not yet been reported for urgent surgery procedures. We aimed to assess our initial experience with urgent colectomies performed within an established enhanced recovery pathway. METHODS: In a prospective cohort study, all patients undergoing colonic resection between April 2012 and March 2013 were treated according to a standardized enhanced recovery protocol. Urgent surgeries were compared with the elective procedures with regards to baseline characteristics, compliance with enhanced recovery items, and clinical outcome. RESULTS: Patients (N = 28) requiring urgent colonic resection were included and compared with patients undergoing elective colectomy (N = 63). Overall compliance with the protocol was 57% for the urgent compared with 77% for the elective procedures (p = 0.006). The pre-operative compliance was 64 versus 96% (p < 0.001), the intra-operative compliance was 77 versus 86% (p = 0.145), and the post-operative compliance was 49 versus 67% (p = 0.015), for the urgent and elective resections, respectively. Overall, 18 urgent patients (64%) and 32 elective patients (51%) developed postoperative complications (p = 0.261). Median postoperative length of stay was 8 days in the urgent setting compared with 5 days in the elective setting (p = 0.006). CONCLUSIONS: Many of the intra-operative and post-operative enhanced recovery items can also be applied to urgent colectomy, entailing outcomes that approach the results achieved in the elective setting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Johanson-Blizzard syndrome (JBS; OMIM 243800) is an autosomal recessive disorder that includes congenital exocrine pancreatic insufficiency, facial dysmorphism with the characteristic nasal wing hypoplasia, multiple malformations, and frequent mental retardation. Our previous work has shown that JBS is caused by mutations in human UBR1, which encodes one of the E3 ubiquitin ligases of the N-end rule pathway. The N-end rule relates the regulation of the in vivo half-life of a protein to the identity of its N-terminal residue. One class of degradation signals (degrons) recognized by UBR1 are destabilizing N-terminal residues of protein substrates.Methodology/Principal Findings: Most JBS-causing alterations of UBR1 are nonsense, frameshift or splice-site mutations that abolish UBR1 activity. We report here missense mutations of human UBR1 in patients with milder variants of JBS. These single-residue changes, including a previously reported missense mutation, involve positions in the RING-H2 and UBR domains of UBR1 that are conserved among eukaryotes. Taking advantage of this conservation, we constructed alleles of the yeast Saccharomyces cerevisiae UBR1 that were counterparts of missense JBS-UBR1 alleles. Among these yeast Ubr1 mutants, one of them (H160R) was inactive in yeast-based activity assays, the other one (Q1224E) had a detectable but weak activity, and the third one (V146L) exhibited a decreased but significant activity, in agreement with manifestations of JBS in the corresponding JBS patients.Conclusions/Significance: These results, made possible by modeling defects of a human ubiquitin ligase in its yeast counterpart, verified and confirmed the relevance of specific missense UBR1 alleles to JBS, and suggested that a residual activity of a missense allele is causally associated with milder variants of JBS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intrathymic T-cell maturation critically depends on the selective expansion of thymocytes expressing a functionally rearranged T-cell receptor (TCR) beta chain. In addition, TCR-independent signals also contribute to normal T-cell development. It is unclear whether and how signals from the 2 types of pathways are integrated. Here, we show that T-cell factor-1 (TCF-1), a nuclear effector of the canonical wingless/int (wnt)/catenin signaling pathway, ensures the survival of proliferating, pre-TCR(+) thymocytes. The survival of pre-TCR(+) thymocytes requires the presence of the N-terminal catenin-binding domain in TCF-1. This domain can bind the transcriptional coactivator beta-catenin and may also bind gamma-catenin (plakoglobin). However, in the absence of gamma-catenin, T-cell development is normal, supporting a role for beta-catenin. Signaling competent beta-catenin is present prior to and thus arises independently from pre-TCR signaling and does not substantially increase on pre-TCR signaling. In contrast, pre-TCR signaling significantly induces TCF-1 expression. This coincides with the activation of a wnt/catenin/TCF reporter transgene in vivo. Collectively, these data suggest that efficient TCF-dependent transcription requires that pre-TCR signaling induces TCF-1 expression, whereas wnt signals may provide the coactivator such as beta-catenin. The 2 pathways thus have to cooperate to ensure thymocyte survival at the pre-TCR stage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants possess an interrelated and interacting family of potent fatty acid-derived regulators--the jasmonates. These compounds, which play roles in both defense and development, are derived from tri-unsaturated fatty acids [alpha-linolenic acid (18:3) or 7Z,10Z,13Z-hexadecatrienoic acid (16:3)]. The lipoxygenase-catalyzed addition of molecular oxygen to alpha-linolenic acid initiates jasmonate synthesis by providing a 13-hydroperoxide substrate for the formation of an unstable allene oxide that is then subject to enzyme-guided cyclization to produce 12-oxo-phytodienoic acid (OPDA). OPDA, a key regulatory lipid in the plant immune system, has several fates, including esterification into plastid lipids or transformation into the 12-carbon co-regulator jasmonic acid (JA). JA, the best-characterized member of the family, regulates both male and female fertility (depending on the plant species), and is an important mediator of defense gene expresssion. JA is itself a substrate for further diverse modifications. Genetic dissection of the pathway is revealing how the different jasmonates modulate different physiological processes. Each new family member that is discovered provides another key to understanding the fine control of gene expression in immune responses, in the initiation and maintenance of long-distance signal transfer in response to wounding, and in the regulation of fertility, among other processes. The Jasmonate Biochemical Pathway provides an overview of the growing jasmonate family, and new members will be included in future versions of the Connections Map. Science Viewpoint R. Liechti, E. E. Farmer, The jasmonate pathway. Science 296, 1649-1650 (2002). [Abstract] [Full Text]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Malignant gliomas, including the most common and fatal form glioblastoma (GBM, WHO grade IV astrocytoma), remain a challenge to treat. In the United States and Europe, more than 30,000 patients per year are newly diagnosed with GBM. Despite ongoing trials, the best currently available multimodal treatment approaches include surgical resection followed by concomitant and adjuvant radiation (RT) and temozolomide (TMZ) therapy, resulting in a low median overall survival (OS) rate ranging from 12.2 - 15.9 months. The important role of genetic and epigenetic changes in DNA, RNA, and protein alteration as well as epigenetic changes secondary to the tumor microenvironment and outside selection pressure (therapeutic interventions), are increasingly being recognized. In GBM treatment, the focus is shifting toward a more patient-centered (personalized) therapy. In this regard, in particular, microRNAs are being increasingly studied. MicroRNAs are non¬protein coding small RNAs that serve as negative gene regulators by binding to a specific sequence in the promoter region of a target gene, thus regulating gene expression. A single microRNA potentially targets hundreds of genes; thus, microRNAs and their cognate target genes have important roles as tumor suppressors and oncogenes as well as regulators of various cancer- specific cellular features, such as proliferation, apoptosis, invasion, and metastasis. The identification of distinct microRNA-gene regulatory networks in GBM patients can be expected to provide novel therapeutic insights by identifying candidate patients for targeted therapies. To this end, in this work we identified and validated clinically relevant and meaningful novel gene- microRNA regulatory networks that correlated with MR tumor phenotypes, histopathology, and patient survival and response rates to therapy. - Le traitement des gliomes malins, y compris sous leur forme la plus commune et meurtrière, le glioblastome (GBM, ou astrocytome de grade IV selon l'OMS), demeure à ce jour un défi. Aux États-Unis et en Europe, un nouveau diagnostic de GBM est prononcé dans plus de 30Ό00 cas par an. En dépit de tests en cours, les meilleures approches thérapeutiques combinées actuellement disponibles comprennent la résection chirurgicale de la tumeur, suivie d'une radiothérapie adjuvante ainsi que d'un traitement au temozolomide (RT/TMZ), thérapies dont résulte une médiane de survie globale basse (overall survival, OS), comprise entre 12.2 et 15.9 mois. On reconnaît de plus en plus le rôle majeur de l'ADN, de l'ARN et de l'altération des protéines ainsi que des modifications épigénétiques, secondaires par rapport au microenvironnement de la tumeur et à la pression de sélection extérieure (les interventions thérapeutiques). Dans le traitement du GBM, le centre d'intérêt se déplace vers une thérapie centrée sur le cas individuel du patient. Dans ce but, en particulier les microARN sont de plus en plus analysés. Les microARN sont de petits ARN non-codants (les protéines) qui servent de régulateurs négatifs de gènes en s'attachant à une séquence spécifique dans la région promotrice d'un gène-cible, régulant ainsi l'expression du gène. Un seul microARN cible potentiellement des centaines de gènes; on a ainsi découvert que les microARN et leurs gènes-cibles apparentés ont une fonction importante en tant que suppresseurs de tumeurs et d'oncogènes, ainsi que comme régulateurs de diverses caractéristiques cellulaires spécifiques du cancer, comme la prolifération, l'apoptose, l'invasion et la métastase. On peut s'attendre à ce que l'identification de réseaux microARN régulateurs de gènes, distincts selon les patients de GBM, fournisse une approche thérapeutique inédite par la détermination des patients susceptibles de réagir favorablement à des thérapies ciblées.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glioblastoma multiforme (GBM) is the most common malignant primary brain tumor in adults. Standard therapeutic approaches provide modest improvement in the progression-free and overall survival, necessitating the investigation of novel therapies. We review the standard treatment options for GBM and evaluate the results obtained in clinical trials for promising novel approaches, including the inhibition of angiogenesis, targeted approaches against molecular pathways, immunotherapies, and local treatment with low voltage electric fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We assessed by immunohistochemistry the expression of the phosphorylated (activated) form of Smad1 and 5 (P-SMAD1/5), of Noggin and of two smooth muscle cell markers (α-SMA and SM22) in a series of human myometrium samples and in a smooth muscle cell line derived from human myometrium (HUt-SMC, PromoCell, USA). Myometrium samples were removed from two cadavers (a fetus at 26weeks of gestation and a neonate) and from ten non-menopausal women who underwent hysterectomy for adenomyosis and leiomyoma. P-SMAD1/5 expression was never detected in myometrium (both normal and pathological specimens), but only as a nuclear positive staining in glandular and luminal epithelial cells in sections in which also the endometrial mucosa was present. Noggin was strongly expressed especially in myometrium and adenomyosis samples from non-menopausal patients in comparison to the neonatal and fetal myometrium specimens in which muscle cells were less positive. In more than 95% of HUt-SMCs, α-SMA and Desmin were co-expressed, indicating a pure smooth muscle phenotype. When progesterone was added to the culture medium, no P-SMAD1/5 expression was detected, whereas the expression Noggin and SM22, a marker of differentiated smooth muscle cells, increased by 3 fold (p=0.002) and 4.3 fold (p=0.001), respectively (p=0.002). Our results suggest that, in non-menopausal normal human myometrium, the BMP pathway might be inhibited and that this inhibition might be enhanced by progesterone, which increases the differentiation of smooth muscle cells (SM22 levels). These findings could help in the identification of new mechanisms that regulate uterine motility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The TNF family ligand ectodysplasin A (EDA) regulates the induction, morphogenesis and/or maintenance of skin-derived structures such as teeth, hair, sweat glands and several other glands. Deficiencies in the EDA - EDA receptor (EDAR) signalling pathway cause hypohidrotic ectodermal dysplasia (HED). This syndrome is characterized by the absence or malformation of several skin-derived appendages resulting in hypotrychosis, hypodontia, heat-intolerance, dry skin and dry eyes, susceptibility to airways infections and crusting of various secretions. The EDA-EDAR system is an important effector of canonical Wnt signalling in developing skin appendages. It functions by stimulating NF-κB-mediated transcription of effectors or inhibitors of the Wnt, Sonic hedgehog (SHH), fibroblast growth factor (FGF) and transforming growth factor beta (TGFβ) pathways that regulate interactions within or between epithelial and mesenchymal cells and tissues. In animal models of Eda-deficiency, soluble EDAR agonists can precisely correct clinically relevant symptoms with low side effects even at high agonist doses, indicating that efficient negative feedback signals occur in treated tissues. Hijacking of the placental antibody transport system can help deliver active molecules to developing foetuses in a timely manner. EDAR agonists may serve to treat certain forms of ectodermal dysplasia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: NovoTTF is a portable device delivering low-intensity, intermediate-frequency, electric fields using noninvasive, disposable scalp electrodes. These fields physically interfere with cell division. Preliminary studies in recurrent and newly diagnosed glioblastoma (GBM) have shown promising results. A phase III study in recurrent GBM has recently been concluded. METHODS: Adults (KPS ≥ 70%) with recurrent GBM (any recurrence) were randomized (stratified by surgery and center) to either NovoTTF administered continuously (20-24 hours/day, 7 days/week) or the best available chemotherapy (best physician choice [BPC]). Primary endpoint was overall survival (OS); 6-month progression-free survival (PFS6), 1-year survival, and QOL were secondary endpoints. RESULTS: Two hundred thirty-seven patients were randomized (28 centers in the United States and Europe) to either NovoTTF alone (120 patients) or BPC (117 patients). Patient characteristics were balanced, median age was 54 years (range, 23-80 years), median KPS was 80% (range, 50-100). One quarter had surgery for recurrence, and over half were at their second or more recurrence. A survival advantage for the device group was seen in patients treated according to protocol (median OS, 7.8 months vs. 6.1 months; n = 185; p = 0.01). Moreover, subgroup analysis in patients with better prognostic baseline characteristics (KPS ≥ 80%; age ≤ 60; 1st-3rd recurrence) demonstrated a robust survival benefit for NovoTTF patients compared to matched BPC patients (median OS, 8.8 months vs. 6.6 months; n = 110; p < 0.01). In this group, 1-year survival was 35% vs. 20% and PFS6 was 25.6% vs. 7.7%. Interestingly, in patients who failed bevacizumab prior to the trial, OS was also significantly extended by NovoTTF (4.4 months vs. 3.1 months; n = 23 vs. n = 21; p < 0.02). Quality of life was equivalent or superior in NovoTTF patients. CONCLUSIONS: NovoTTF, a noninvasive, novel cancer treatment modality shows significant therapeutic efficacy with improved quality of life. The impact of NovoTTF was more pronounced when patients with better baseline prognostic factors were treated. A large scale phase III clinical trial in newly diagnosed GBM is currently being conducted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: The pro-inflammatory cytokine interleukin-1 beta (IL-1 beta) generates pancreatic beta-cells apoptosis mainly through activation of the c-Jun NH(2)-terminal kinase (JNK) pathway. This study was designed to investigate whether the long-acting agonist of the hormone glucagon-like peptide 1 (GLP-1) receptor exendin-4 (ex-4), which mediates protective effects against cytokine-induced beta-cell apoptosis, could interfere with the JNK pathway. RESEARCH DESIGN AND METHODS: Isolated human, rat, and mouse islets and the rat insulin-secreting INS-1E cells were incubated with ex-4 in the presence or absence of IL-1 beta. JNK activity was assessed by solid-phase JNK kinase assay and quantification of c-Jun expression. Cell apoptosis was determined by scoring cells displaying pycnotic nuclei. RESULTS: Ex-4 inhibited induction of the JNK pathway elicited by IL-1 beta. This effect was mimicked with the use of cAMP-raising agents isobutylmethylxanthine and forskolin and required activation of the protein kinase A. Inhibition of the JNK pathway by ex-4 or IBMX and forskolin was concomitant with a rise in the levels of islet-brain 1 (IB1), a potent blocker of the stress-induced JNK pathway. In fact, ex-4 as well as IBMX and forskolin induced expression of IB1 at the promoter level through cAMP response element binding transcription factor 1. Suppression of IB1 levels with the use of RNA interference strategy impaired the protective effects of ex-4 against apoptosis induced by IL-1 beta. CONCLUSIONS: The data establish the requirement of IB1 in the protective action of ex-4 against apoptosis elicited by IL-1 beta and highlight the GLP-1 mimetics as new potent inhibitors of the JNK signaling induced by cytokines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Host resistance to Leishmania major is highly dependent on the development of a Th1 immune response. The TLR adaptator myeloid differentiation protein 88 (MyD88) has been implicated in the Th1 immune response associated with the resistant phenotype observed in C57BL/6 mice after infection with L. major. To investigate whether the MyD88 pathway is differentially used by distinct substrains of parasites, MyD88(-/-) C57BL/6 mice were infected with two substrains of L. major, namely L. major LV39 and L. major IR75. MyD88(-/-) mice were susceptible to both substrains of L. major, although with different kinetics of infection. The mechanisms involved during the immune response associated with susceptibility of MyD88(-/-) mice to L. major is however, parasite substrain-dependent. Susceptibility of MyD88(-/-) mice infected with L. major IR75 is a consequence of Th2 immune-deviation, whereas susceptibility of MyD88(-/-) mice to infection with L. major LV39 resulted from an impaired Th1 response. Depletion of regulatory T cells (Treg) partially restored IFN-gamma secretion and the Th1 immune response in MyD88(-/-) mice infected with L. major LV39, demonstrating a role of Treg activity in the development of an impaired Th1 response in these mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Most patients with glioblastoma are older than 60 years, but treatment guidelines are based on trials in patients aged only up to 70 years. We did a randomised trial to assess the optimum palliative treatment in patients aged 60 years and older with glioblastoma. METHODS: Patients with newly diagnosed glioblastoma were recruited from Austria, Denmark, France, Norway, Sweden, Switzerland, and Turkey. They were assigned by a computer-generated randomisation schedule, stratified by centre, to receive temozolomide (200 mg/m(2) on days 1-5 of every 28 days for up to six cycles), hypofractionated radiotherapy (34·0 Gy administered in 3·4 Gy fractions over 2 weeks), or standard radiotherapy (60·0 Gy administered in 2·0 Gy fractions over 6 weeks). Patients and study staff were aware of treatment assignment. The primary endpoint was overall survival. Analyses were done by intention to treat. This trial is registered, number ISRCTN81470623. FINDINGS: 342 patients were enrolled, of whom 291 were randomised across three treatment groups (temozolomide n=93, hypofractionated radiotherapy n=98, standard radiotherapy n=100) and 51 of whom were randomised across only two groups (temozolomide n=26, hypofractionated radiotherapy n=25). In the three-group randomisation, in comparison with standard radiotherapy, median overall survival was significantly longer with temozolomide (8·3 months [95% CI 7·1-9·5; n=93] vs 6·0 months [95% CI 5·1-6·8; n=100], hazard ratio [HR] 0·70; 95% CI 0·52-0·93, p=0·01), but not with hypofractionated radiotherapy (7·5 months [6·5-8·6; n=98], HR 0·85 [0·64-1·12], p=0·24). For all patients who received temozolomide or hypofractionated radiotherapy (n=242) overall survival was similar (8·4 months [7·3-9·4; n=119] vs 7·4 months [6·4-8·4; n=123]; HR 0·82, 95% CI 0·63-1·06; p=0·12). For age older than 70 years, survival was better with temozolomide and with hypofractionated radiotherapy than with standard radiotherapy (HR for temozolomide vs standard radiotherapy 0·35 [0·21-0·56], p<0·0001; HR for hypofractionated vs standard radiotherapy 0·59 [95% CI 0·37-0·93], p=0·02). Patients treated with temozolomide who had tumour MGMT promoter methylation had significantly longer survival than those without MGMT promoter methylation (9·7 months [95% CI 8·0-11·4] vs 6·8 months [5·9-7·7]; HR 0·56 [95% CI 0·34-0·93], p=0·02), but no difference was noted between those with methylated and unmethylated MGMT promoter treated with radiotherapy (HR 0·97 [95% CI 0·69-1·38]; p=0·81). As expected, the most common grade 3-4 adverse events in the temozolomide group were neutropenia (n=12) and thrombocytopenia (n=18). Grade 3-5 infections in all randomisation groups were reported in 18 patients. Two patients had fatal infections (one in the temozolomide group and one in the standard radiotherapy group) and one in the temozolomide group with grade 2 thrombocytopenia died from complications after surgery for a gastrointestinal bleed. INTERPRETATION: Standard radiotherapy was associated with poor outcomes, especially in patients older than 70 years. Both temozolomide and hypofractionated radiotherapy should be considered as standard treatment options in elderly patients with glioblastoma. MGMT promoter methylation status might be a useful predictive marker for benefit from temozolomide. FUNDING: Merck, Lion's Cancer Research Foundation, University of Umeå, and the Swedish Cancer Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Exposure to intermittent hypoxia (IH) may enhance cardiac function and protects heart against ischemia-reperfusion (I/R) injury. To elucidate the underlying mechanisms, we developed a cardioprotective IH model that was characterized at hemodynamic, biochemical and molecular levels. METHODS: Mice were exposed to 4 daily IH cycles (each composed of 2-min at 6-8% O2 followed by 3-min reoxygenation for 5 times) for 14 days, with normoxic mice as controls. Mice were then anesthetized and subdivided in various subgroups for analysis of contractility (pressure-volume loop), morphology, biochemistry or resistance to I/R (30-min occlusion of the left anterior descending coronary artery (LAD) followed by reperfusion and measurement of the area at risk and infarct size). In some mice, the phosphatidylinositide 3-kinase (PI3K) inhibitor wortmannin was administered (24 µg/kg ip) 15 min before LAD. RESULTS: We found that IH did not induce myocardial hypertrophy; rather both contractility and cardiac function improved with greater number of capillaries per unit volume and greater expression of VEGF-R2, but not of VEGF. Besides increasing the phosphorylation of protein kinase B (Akt) and the endothelial isoform of NO synthase with respect to control, IH reduced the infarct size and post-LAD proteins carbonylation, index of oxidative damage. Administration of wortmannin reduced the level of Akt phosphorylation and worsened the infarct size. CONCLUSION: We conclude that the PI3K/Akt pathway is crucial for IH-induced cardioprotection and may represent a viable target to reduce myocardial I/R injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

APO866, an inhibitor of NAD biosynthesis, exhibits potent antitumor properties in various malignancies. Recently, it has been shown that APO866 induces apoptosis and autophagy in human hematological cancer cells, but the role of autophagy in APO866-induced cell death remains unclear. Here, we report studies on the molecular mechanisms underlying APO866-induced cell death with emphasis on autophagy. Treatment of leukemia and lymphoma cells with APO866 induced both autophagy, as evidenced by an increase in autophagosome formation and in SQSTM1/p62 degradation, but also increased caspase activation as revealed by CASP3/caspase 3 cleavage. As an underlying mechanism, APO866-mediated autophagy was found to deplete CAT/catalase, a reactive oxygen species (ROS) scavenger, thus promoting ROS production and cell death. Inhibition of autophagy by ATG5 or ATG7 silencing prevented CAT degradation, ROS production, caspase activation, and APO866-induced cell death. Finally, supplementation with exogenous CAT also abolished APO866 cytotoxic activity. Altogether, our results indicated that autophagy is essential for APO866 cytotoxic activity on cells from hematological malignancies and also indicate an autophagy-dependent CAT degradation, a novel mechanism for APO866-mediated cell killing. Autophagy-modulating approaches could be a new way to enhance the antitumor activity of APO866 and related agents.