293 resultados para développement de composés antimicrobiens


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several questions about the story of Gen 2-3 remain unresolved in current scholarship. For instance, the implications and manifold consequences of the transgression act - the consumption of the forbidden fruit - are much debated. Interpreters generally agree that the story is connected to several "J" / "non-P" narratives of the primeval history. Besides the use of the tetragrammaton as the designation for God, a common characteristic of these stories is the strong opposition between Yhwh as a harsh deity on one hand and disobedient and transgressing humankind on the other. This paper reconsiders several open questions as well as the aforementioned consensus. The analysis of important motifs in Gen 2-3 leads to the conclusion that this story differs in theologically important ways from the postulated "J"-narrative in Genesis. This indicates that it was not composed as an integral part of that narrative. There are, in Gen 2-3, ideological features and linguistic elements typical of the "J" stratum, but they are all found in the sections that present Yhwh God's investigation and punishment of the couple (3,8-19.24). Since these verses are in tension with or even contradict their immediate context, it should be assigned to a redactional ("J") layer. According to this analysis, the transgression in Gen 2-3 should not be considered a sin. Rather, it is an important step in human evolution towards a self-conscious and autonomous being. The plot has a structure similar to some episodes in ancient Near Eastern myths. 'Initiation' functions as a central theme. Finally, the article discusses the literary milieu of the story. Because of several linguistic and thematic similarities with Gen 1, with P-texts in general, and with the book of Ezekiel, the relationship of Gen 2-3 to these literary entities needs to be reconsidered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

« Les yeux sont du visage humain la partie la plus noble et la plus importante, les yeux sont composés de corps, d'âme et d'esprit, ou plutôt les yeux sont la fenêtre où l'âme et l'esprit viennent se montrer » (Alphonse Karr, 1853). L'oeil est le regard, mais pour l'ophtalmologue il est aussi une fenêtre ouverte et un regard possible sur le reste du corps. Prolongement du système nerveux central en contact direct avec le monde extérieur dont il est l'un des « senseurs » le plus subtil et le plus complexe, il est sujet à des réactions inflammatoires, allergiques et toxiques chez l'enfant et chez l'adulte. Alors que notre environnement visuel change (modification des systèmes d'éclairage domestique dans les villes, écrans, mode de vie et habitudes de travail), que les polluants se multiplient et se combinent et que les environnements climatisés deviennent la règle, le nombre de patients souffrant de pathologies de la surface oculaire atteint 30 % des motifs de nos consultations et le nombre des patients myopes est en hausse. L'oeil est l'un des « senseurs » le plus subtil et le plus complexe Si la surface oculaire peut aussi être le témoin des pathologies systémiques, c'est la rétine qui en est plus fréquemment le reflet. Les atteintes du lit vasculaire, du nerf optique ou de la rétine peuvent être des manifestations de pathologies générales ou d'effets secondaires ou toxiques de médicaments. L'examen du fond d'oeil et la rétinophotographie restent les examens de dépistage de référence en particulier pour la rétinopathie diabétique, véritable fléau mondial et première cause de cécité dans les pays industrialisés chez les jeunes adultes. Mais ce n'est que par la collaboration entre ophtalmologues, médecins traitants et autres spécialistes que les pathologies rétiniennes peuvent être prises en charge de façon optimale pour qu'à des traitements oculaires spécifiques soit associée la prise en charge globale des maladies causales ou interférentes. Au-delà du fond d'oeil, les progrès technologiques contribuent au développement de multiples méthodes d'exploration des différentes structures de l'oeil offrant ainsi la possibilité d'utiliser l'oeil comme témoin de manifestations précoces de maladies neurologiques périphériques ou centrales. L'imagerie cornéenne semble aujourd'hui capable de révéler et de suivre de façon longitudinale la neuropathie diabétique périphérique et il n'est pas impossible que la rétine devienne le site de détection précoce de la maladie d'Alzheimer. Sur le plan de la prise en charge, l'ophtalmologue ne peut pas se contenter de traiter l'oeil, il doit aussi assurer une prise en charge pluridisciplinaire et accompagner le patient qui, perdant la vision, est sujet à la dépression et à la majoration de tout autre handicap. La perte visuelle est le handicap le plus redouté des populations et la perte d'autonomie qu'il induit limite l'observance et le suivi thérapeutique (comparable en termes de gravité ressentie à un « alitement brutal dans les suites d'un AVC »). La médecine personnalisée et les interactions multidisciplinaires prennent ici tout leur sens. Les développements thérapeutiques ont été majeurs ces dernières années et la cécité n'est plus une fatalité, au moins dans certains cas. Mais la rétine étant un tissu nerveux post-mitotique, les traitements et donc le dépistage doivent être précoces pour prévenir la perte visuelle irréversible. Spécifiquement, les espoirs lointains comme la thérapie génique entrent dans les essais cliniques laissant entrevoir la lumière au bout du tunnel. A portée de vue, la rétine artificielle constitue une avancée concrète, encore perfectible mais accessible dès aujourd'hui. Si les progrès sont manifestes dans le domaine de l'ophtalmologie, il reste encore beaucoup à apprendre et à comprendre en particulier dans les mécanismes pathogéniques multifactoriels des maladies oculaires plus fréquentes. Seule une exploration approfondie des maladies humaines pourra nous permettre de mieux appréhender de nouvelles stratégies thérapeutiques. Comme le disait André Isaac (1893-1975), pour voir loin, il faut regarder de près.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multicellular organisms rely on specialized tissues that allow for the controlled exchange of matter with their surrounding. In order to function properly, these tissues need to establish a tight connection between the individual cells to prevent uncontrolled passive diffusion across the extracellular space. In animals, these connections are called tight and adherens junctions and are a critical feature of epithelia. These connections, however, rely on direct protein-protein interaction of plasma membrane proteins of adjacent cells. Such a mechanism is not possible in plants due to the cell wall, which encases the individual cells. In order to absorb nutrients, while simultaneously preventing uncontrolled diffusion between cells, land plants have evolved the root endodermis, which is functionally equivalent to animal epithelia. Its cells are surrounded by a precisely localized and aligned, ring-like lignin deposition, called the Casparian strip, and therefore tightly connected between each other. Very little was known about the development of the endodermis and the Casparian strip until recently. In the meantime, however, we have identified a family of endodermis- specific proteins, the CASPs, which recruits extracellular proteins the specific Casparian strip membrane domain (CSD) to locally synthesize lignin in the cell wall. Yet, we hardly knew any specifics on how the CSD is initially defined and how the critically important CASPs are being recruited to it. We therefore conducted a forward genetic screen on the localization of CASPI-GFP in order to identify novel mutants, which lack a defined CSD. We identified 48 mutants, which fell into 15 different complementation groups. While some of the isolated genes had previously been identified through different approaches, nine novel genes, which had never been implicated in CSD development and maintenance, were identified. One of them, LORD OF THE RINGS 2 (.LOTR2) is described to greater detail in this work. LOTR2 encodes for EX070A1, a protein of the evolutionary conserved exocyst complex. This complex has frequently been implicated in various secretory processes across kingdoms. In Arabidopsis, it transiently defines the positioning of CASPI-GFP. We have performed a detailed analysis of the dynamics of EX070A1 and CASPI-GFP, including studies with other markers and propose a mechanism, by which the cytosolic EX070A1 transiently defines a plasma membrane domain to recruit transmembrane proteins, which then recruit extracellular enzymes for localized cell wall modification. Considering the ubiquitous expression of EX070A1, we think that this mechanism is potentially of importance not only for the endodermis and the Casparian strip but also for many other tissues, in which the cell wall becomes locally modified. In fact, many other tissues with secondary cell wall modifications contain proteins very similar to the CASPs. It will be interesting to see to which degree this mechanism is employed in other tissues. As for the endodermis, we have now identified the first gene, which is not specific to the endodermis but shows endodermis-specific dynamics. This might give us a better insight on how the plant modulates this ubiquitously present factor in a cell- or tissue-type specific manner. Considering the knowledge, mutants and tools, which are available to us for investigating the endodermis, the Casparian strip, the exocyst complex and EX070A1 might be just the right experimental system to address these questions. -- Les organismes multicellulaires dépendent des tissues spécialisé pour l'échange contrôlé entre eux et leur environnement. Pour leur bon fonctionnement, les cellules de ces tissus ont besoin d'être très étroitement assemblés afin de prévenir la diffusion non-contrôlée à travers l'espace extracellulaire. Chez les animaux, ces connexions sont appelées jonctions serrées et jonctions adhérentes. Ces jonctions dépendent des interactions directes entre les protéines des cellules voisines. Ceci n'est pas possible chez les plantes à cause de la paroi cellulaire qui recouvre chaque cellule individuellement. Pour absorber les nutriments et en même temps empêcher la diffusion non-contrôlé entre cellules, les plantes ont évolué 1'endoderme dans la racine, qui est fonctionnellement équivalent aux épithéliums des animaux. Les cellules de l'endoderme sont ceinturées par une déposition de lignine très précisément localisées comme un anneau et alignées entre les cellules, et qui, donc, connecte étroitement les cellules avoisinante: Le cadre de Caspary. Peu était connu sur le développement de l'endoderme et le cadre de Caspaiy jusqu'à il y a quelques années. Récemment, pourtant, nous avons identifié une famille de protéines spécifiques à l'endoderme, les CASPs, qui définissent le domaine membranaire du cadre de Caspaiy (CSD). Les CASPs recrutent les protéines extracellulaires nécessaire à la synthèse du cadre de Caspary vers une région limité dans la paroi cellulaire. Pourtant, on connaît très peu les processus spécifiques concernant la définition initiale du CSD et comment les CASPs, qui ont une importance cruciale, sont recrutées vers ce domaine. Par conséquent nous avons mené un crible génétique sur la localisation du CASPI- GFP, qui sert comme marqueur pour le CSD. Notre but étant d'isoler de nouveaux mutants affectés dans l'établissement du CSD. Nous avons identifié 48 mutants, en 15 groupes de complémentation. Bien que certains des gènes isolés étaient déjà impliqué dans la formation du cadre de Caspary, neuf nouveaux gènes n'ayant jamais été impliqués dans le développement ou la maintenance du CSD ont pu être identifiés. Un de ces gènes, LORD OF THE RINGS2 (LOTR2) sera décrit plus en détail dans cette étude. LOTR2 code pour EX070A1, qui est une protéine, du complexe exocyste. Ce complexe de protéines a très bien été conservé au cours de l'évolution. Il était souvent impliqué dans plusieurs processus de sécrétion dans toutes les branches de la vie. Chez Arabidopsis, EX070A1 définit la position du CSD d'une façon transitoire et recrute CASP1- GFP. Nous avons mené une analyse détaillée des dynamiques d'EX070Al et CASPI-GFP ainsi que, des études avec des autres mutants. Nous proposons un mécanisme, d'après lequel EX070A1, recruté du cytosol, définit un domaine dans la membrane plasmique pour localiser des protéines transmembranaires, ces dernières ensuite recruteront des enzymes extracellulaires pour la modification locale de la paroi cellulaire. Vu qu'EX070A1 est exprimé dans toute dans la plante, nous pensons que ce mécanisme est potentiellement important non seulement pour l'endoderme et le cadre de Caspary, mais aussi pour les autres tissus où la paroi cellulaire doit être localement modifiée. En effet, plusieurs autres tissus contiennent des protéines très similaires aux CASPs. Il serait intéressant de voir à quelle dégrée ce mécanisme est également utilisé dans ces tissues. En ce qui concerne l'endoderme, nous avons maintenant identifié le premier gène qui n'est pas exprimé spécifiquement dans l'endoderme, mais qui montre tout de même une dynamique caractéristique dans ce tissu. Il serait intéressant de voir comment la plante peut moduler ce facteur omniprésent d'une façon spécifique. Vu les connaissances, les mutants et les outils qu'on a maintenant à notre disposition, l'endoderme et son cadre de Caspary, le complexe exocyste et EX070A1 sont probablement des bons systèmes expérimentaux pour étudier ces questions. -- Identification des nouveaux facteurs pendant l'établissement du cadre de Caspary dans l'endoderme. Lothar Kalmbach, Département de Biologie Moléculaire Végétale (DBMV), Université de Lausanne. Comme tous les autres organismes multicellulaires, les plantes terrestres dépendent de tissus spécialisés pour l'échange contrôlé avec leur environnement. Ces tissus sont importants pour l'absorption des nutriments mais également pour éviter l'influx de composés toxiques. Chez les plantes, ce tissu se trouve dans la racine. C'est l'endoderme. Grâce au cadre de Caspary, qui permet une forte connexion entre les cellules au niveau de leur paroi, l'endoderme empêche les éléments toxiques d'entrer dans le système vasculaire. Depuis quelques années, nous comprenons de plus en plus la nature et la biosynthèse, ainsi que les protéines impliquées dans l'ancrage des enzymes à la membrane plasmique. Nous n'avons eu, par contre, aucune idée sur le mécanisme qui d'abord définit cet endroit dans la membrane plasmique. Nous avons mené un crible génétique sur la localisation de CASPI-GFP, une protéine, qui recrute les enzymes extracellulaires pour la synthèse du cadre de Caspary. Nous avons identifié plusieurs nouveaux gènes qui sont impliqués dans l'intégrité du cadre de Caspary. L'un de ces gènes est EX070A1, qui est un facteur ayant un rôle important lors de la sécrétion des protéines dans tous les organismes eukaryotes. Ces mutants sont gravement affectés au niveau du cadre de Caspary, mais surtout ils ne sont plus capables de localiser CASPI-GFP. Nous avons suivi la dynamique d'EX070Al et de CASP1-GFP en combinaison avec d'autres marqueurs. Nous avons pu montrer que l'accumulation d'EX070Al est spécifique pour l'endoderme et essentielle pour bien localiser CASPI-GFP et donc, le cadre de Caspary. Ces résultats nous aident à mieux comprendre le développement de l'endoderme mais peuvent potentiellement aussi être utilisés pour étudier les modifications de la paroi cellulaire dans d'autres cellules de la plante.