342 resultados para Stroke index
Resumo:
BACKGROUND: Obesity is strongly associated with major depressive disorder (MDD) and various other diseases. Genome-wide association studies have identified multiple risk loci robustly associated with body mass index (BMI). In this study, we aimed to investigate whether a genetic risk score (GRS) combining multiple BMI risk loci might have utility in prediction of obesity in patients with MDD. METHODS: Linear and logistic regression models were conducted to predict BMI and obesity, respectively, in three independent large case-control studies of major depression (Radiant, GSK-Munich, PsyCoLaus). The analyses were first performed in the whole sample and then separately in depressed cases and controls. An unweighted GRS was calculated by summation of the number of risk alleles. A weighted GRS was calculated as the sum of risk alleles at each locus multiplied by their effect sizes. Receiver operating characteristic (ROC) analysis was used to compare the discriminatory ability of predictors of obesity. RESULTS: In the discovery phase, a total of 2,521 participants (1,895 depressed patients and 626 controls) were included from the Radiant study. Both unweighted and weighted GRS were highly associated with BMI (P <0.001) but explained only a modest amount of variance. Adding 'traditional' risk factors to GRS significantly improved the predictive ability with the area under the curve (AUC) in the ROC analysis, increasing from 0.58 to 0.66 (95% CI, 0.62-0.68; χ(2) = 27.68; P <0.0001). Although there was no formal evidence of interaction between depression status and GRS, there was further improvement in AUC in the ROC analysis when depression status was added to the model (AUC = 0.71; 95% CI, 0.68-0.73; χ(2) = 28.64; P <0.0001). We further found that the GRS accounted for more variance of BMI in depressed patients than in healthy controls. Again, GRS discriminated obesity better in depressed patients compared to healthy controls. We later replicated these analyses in two independent samples (GSK-Munich and PsyCoLaus) and found similar results. CONCLUSIONS: A GRS proved to be a highly significant predictor of obesity in people with MDD but accounted for only modest amount of variance. Nevertheless, as more risk loci are identified, combining a GRS approach with information on non-genetic risk factors could become a useful strategy in identifying MDD patients at higher risk of developing obesity.
Resumo:
We tested for interactions between body mass index (BMI) and common genetic variants affecting serum urate levels, genome-wide, in up to 42569 participants. Both stratified genome-wide association (GWAS) analyses, in lean, overweight and obese individuals, and regression-type analyses in a non BMI-stratified overall sample were performed. The former did not uncover any novel locus with a major main effect, but supported modulation of effects for some known and potentially new urate loci. The latter highlighted a SNP at RBFOX3 reaching genome-wide significant level (effect size 0.014, 95% CI 0.008-0.02, Pinter= 2.6 x 10-8). Two top loci in interaction term analyses, RBFOX3 and ERO1LB-EDARADD, also displayed suggestive differences in main effect size between the lean and obese strata. All top ranking loci for urate effect differences between BMI categories were novel and most had small magnitude but opposite direction effects between strata. They include the locus RBMS1-TANK (men, Pdifflean-overweight= 4.7 x 10-8), a region that has been associated with several obesity related traits, and TSPYL5 (men, Pdifflean-overweight= 9.1 x 10-8), regulating adipocytes-produced estradiol. The top-ranking known urate loci was ABCG2, the strongest known gout risk locus, with an effect halved in obese compared to lean men (Pdifflean-obese= 2 x 10-4). Finally, pathway analysis suggested a role for N-glycan biosynthesis as a prominent urate-associated pathway in the lean stratum. These results illustrate a potentially powerful way to monitor changes occurring in obesogenic environment.
Resumo:
PURPOSE: The natural history of prostate cancer might be driven by the index lesion. We determined the percent of men in whom the index lesion could be defined using transperineal template prostate mapping biopsies. MATERIALS AND METHODS: Included in study were consecutive men undergoing transperineal template prostate mapping biopsies with biopsies grouped into 20 zones. Men with clinically significant disease in only 1 prostate area were considered to have an identifiable index lesion. We evaluated the impact of using 2 definitions of clinically significant disease (Gleason grade pattern 4 and/or lesion volume 0.5 cc or greater) and 2 clustering rules (stringent and tolerant) to define the index lesion. RESULTS: Included in study were 391 men with a median age of 62 years (IQR 58-67) and a median prostate specific antigen of 6.9 ng/ml (IQR 4.8-10.0). Of the men 269 (69%) were previously diagnosed with prostate cancer. By deploying a median of 1.2 cores per ml (IQR 0.9-1.7) cancer was diagnosed in 82.9% of the men (324 of 391) with a median of 6 positive cores (IQR 2-9), a median maximum cancer core length of 5 mm (IQR 3-8) and a total cancer core length per zone of 7 mm (IQR 3-13). Insignificant disease was found in 26.3% to 42.9% of cases. When a stringent spatial relationship was used to define individual lesions, 44.4% to 54.6% of patients had 1 index lesion and 12.7% to 19.1% had more than 1 area with clinically significant disease. These proportions changed to 46.6% to 59.2% and 10.5% to 14.5%, respectively, when less stringent spatial clustering was applied. CONCLUSIONS: Transperineal template prostate mapping biopsies enable the index lesion to be localized in most men with clinically significant disease. This information may be important to select appropriate candidates for targeted therapy and to plan a tailored treatment strategy in men undergoing radical therapy.
Resumo:
BACKGROUND: Visceral obesity (VO) increases technical difficulty in laparoscopic surgery. The body mass index (BMI) does not always correlate to intra-abdominal fat distribution. Our hypothesis was that simple anthropometric measures that reflect VO, could predict technical difficulty in laparoscopic colorectal surgery, as reflected by the operative time, more accurately than the BMI. METHODS: Charts of all consecutive patients who underwent laparoscopic left colon resection in our institution between 2007 and 2010 were reviewed retrospectively. On a preoperative CT scan, anthropometric measures were taken on an axial plane at the L4-L5 level. Demographic, operative and anthropometric CT measures were correlated with the operative time. Logistic regression analysis was performed to assess the value of anthropometric CT measures or BMI to predict the duration of the colectomy. RESULTS: 121 patients with elective left colon resection for benign (56%) or malignant disease (44%) were included. There were 74 sigmoid resections (61%), 21 left hemicolectomies (17%) and 26 low anterior resections (22%). A longer sagittal abdominal diameter (≥24.8 cm) was significantly associated with longer corrected operative time (248 vs. 228 min, p = 0.043). In multivariate analysis, greater sagittal abdominal diameter, sagittal internal diameter and abdominal perimeter were significantly associated with longer operative time. No significant association was found for the BMI neither in univariate nor in multivariate analysis. CONCLUSIONS: This study suggests that simple linear measures taken on a CT scan, such as sagittal abdominal diameter, sagittal internal diameter and abdominal perimeter, may predict longer operative time in laparoscopic left colonic resections more accurately than BMI.
Resumo:
BACKGROUND AND OBJECTIVES: Neonatal arterial ischemic stroke (NAIS) is associated with considerable lifetime burdens such as cerebral palsy, epilepsy, and cognitive impairment. Prospective epidemiologic studies that include outcome assessments are scarce. This study aimed to provide information on the epidemiology, clinical manifestations, infarct characteristics, associated clinical variables, treatment strategies, and outcomes of NAIS in a prospective, population-based cohort of Swiss children. METHODS: This prospective study evaluated the epidemiology, clinical manifestations, vascular territories, associated clinical variables, and treatment of all full-term neonates diagnosed with NAIS and born in Switzerland between 2000 and 2010. Follow-up was performed 2 years (mean 23.3 months, SD 4.3 months) after birth. RESULTS: One hundred neonates (67 boys) had a diagnosis of NAIS. The NAIS incidence in Switzerland during this time was 13 (95% confidence interval [CI], 11-17) per 100 000 live births. Seizures were the most common symptom (95%). Eighty-one percent had unilateral (80% left-sided) and 19% had bilateral lesions. Risk factors included maternal risk conditions (32%), birth complications (68%), and neonatal comorbidities (54%). Antithrombotic and antiplatelet therapy use was low (17%). No serious side effects were reported. Two years after birth, 39% were diagnosed with cerebral palsy and 31% had delayed mental performance. CONCLUSIONS: NAIS in Switzerland shows a similar incidence as other population-based studies. About one-third of patients developed cerebral palsy or showed delayed mental performance 2 years after birth, and children with normal mental performance may still develop deficits later in life.
Resumo:
OBJECTIVE: Renal resistive index (RRI) varies directly with renal vascular stiffness and pulse pressure. RRI correlates positively with arteriolosclerosis in damaged kidneys and predicts progressive renal dysfunction. Matrix Gla-protein (MGP) is a vascular calcification inhibitor that needs vitamin K to be activated. Inactive MGP, known as desphospho-uncarboxylated MGP (dp-ucMGP), can be measured in plasma and has been associated with various cardiovascular (CV) markers, CV outcomes and mortality. In this study we hypothesize that increased RRI is associated with high levels of dp-ucMGP. DESIGN AND METHOD: We recruited participants via a multi-center family-based cross-sectional study in Switzerland exploring the role of genes and kidney hemodynamics in blood pressure regulation. Dp-ucMGP was quantified in plasma samples by sandwich ELISA. Renal doppler sonography was performed using a standardized protocol to measure RRIs on 3 segmental arteries in each kidney. The mean of the 6 measures was reported. Multiple regression analysis was performed to estimate associations between RRI and dp-ucMGP adjusting for sex, age, pulse pressure, mean pressure, renal function and other CV risk factors. RESULTS: We included 1035 participants in our analyses. Mean values were 0.64 ± 0.06 for RRI and 0.44 ± 0.21 (nmol/L) for dp-ucMGP. RRI was positively associated with dp-ucMGP both before and after adjustment for sex, age, body mass index, pulse pressure, mean pressure, heart rate, renal function, low and high density lipoprotein, smoking status, diabetes, blood pressure and cholesterol lowering drugs, and history of CV disease (P < 0.001). CONCLUSIONS: RRI is independently and positively associated with high levels of dp-ucMGP after adjustment for pulse pressure and common CV risk factors. Further studies are needed to determine if vitamin K supplementation can have a positive effect on renal vascular stiffness and kidney function.
Resumo:
Children who sustain a prenatal or perinatal brain injury in the form of a stroke develop remarkably normal cognitive functions in certain areas, with a particular strength in language skills. A dominant explanation for this is that brain regions from the contralesional hemisphere "take over" their functions, whereas the damaged areas and other ipsilesional regions play much less of a role. However, it is difficult to tease apart whether changes in neural activity after early brain injury are due to damage caused by the lesion or by processes related to postinjury reorganization. We sought to differentiate between these two causes by investigating the functional connectivity (FC) of brain areas during the resting state in human children with early brain injury using a computational model. We simulated a large-scale network consisting of realistic models of local brain areas coupled through anatomical connectivity information of healthy and injured participants. We then compared the resulting simulated FC values of healthy and injured participants with the empirical ones. We found that the empirical connectivity values, especially of the damaged areas, correlated better with simulated values of a healthy brain than those of an injured brain. This result indicates that the structural damage caused by an early brain injury is unlikely to have an adverse and sustained impact on the functional connections, albeit during the resting state, of damaged areas. Therefore, these areas could continue to play a role in the development of near-normal function in certain domains such as language in these children.