296 resultados para PROTEIN P62
Resumo:
AIMS/HYPOTHESIS: The molecular mechanisms of obesity-related insulin resistance are incompletely understood. Macrophages accumulate in adipose tissue of obese individuals. In obesity, monocyte chemoattractant protein-1 (MCP-1), a key chemokine in the process of macrophage accumulation, is overexpressed in adipose tissue. MCP-1 is an insulin-responsive gene that continues to respond to exogenous insulin in insulin-resistant adipocytes and mice. MCP-1 decreases insulin-stimulated glucose uptake into adipocytes. The A-2518G polymorphism in the distal regulatory region of MCP-1 may regulate gene expression. The aim of this study was to investigate the impact of this gene polymorphism on insulin resistance. METHODS: We genotyped the Ludwigshafen Risk and Cardiovascular Health (LURIC) cohort ( n=3307). Insulin resistance, estimated by homeostasis model assessment, and Type 2 diabetes were diagnosed in 803 and 635 patients respectively. RESULTS: Univariate analysis revealed that plasma MCP-1 levels were significantly and positively correlated with WHR ( p=0.011), insulin resistance ( p=0.0097) and diabetes ( p<0.0001). Presence of the MCP-1 G-2518 allele was associated with decreased plasma MCP-1 ( p=0.017), a decreased prevalence of insulin resistance (odds ratio [OR]=0.82, 95% CI: 0.70-0.97, p=0.021) and a decreased prevalence of diabetes (OR=0.80, 95% CI: 0.67-0.96, p=0.014). In multivariate analysis, the G allele retained statistical significance as a negative predictor of insulin resistance (OR=0.78, 95% CI: 0.65-0.93, p=0.0060) and diabetes (OR=0.80, 95% CI: 0.66-0.96, p=0.018). CONCLUSIONS/INTERPRETATION: In a large cohort of Caucasians, the MCP-1 G-2518 gene variant was significantly and negatively correlated with plasma MCP-1 levels and the prevalence of insulin resistance and Type 2 diabetes. These results add to recent evidence supporting a role for MCP-1 in pathologies associated with hyperinsulinaemia.
Resumo:
Intracellular membrane fusion proceeds via distinct stages of membrane docking, hemifusion and fusion pore opening and depends on interacting families of Rab, SNARE and SM proteins. Trans-SNARE complexes dock the membranes in close apposition. Efficient fusion requires further SNARE-associated proteins. They might increase the number of trans-SNARE complexes or the fusogenic potential of a single SNARE complex. We investigated the contributions of the SM protein Vps33 to hemifusion and pore opening between yeast vacuoles. Mutations in Vps33 that weaken its interactions with the SNARE complex allowed normal trans-SNARE pairing and lipid mixing but retarded content mixing. Deleting the H(abc) domain of the vacuolar t-SNARE Vam3, which interacts with Vps33, had the same effect. This suggests that SM proteins promote fusion pore opening by enhancing the fusogenic activity of a SNARE complex. They should thus be considered integral parts of the fusion machinery.
Resumo:
Active protein-disaggregation by a chaperone network composed of ClpB and DnaK + DnaJ + GrpE is essential for the recovery of stress-induced protein aggregates in vitro and in Escherichia coli cells. K-glutamate and glycine-betaine (betaine) naturally accumulate in salt-stressed cells. In addition to providing thermo-protection to native proteins, we found that these osmolytes can strongly and specifically activate ClpB, resulting in an increased efficiency of chaperone-mediated protein disaggregation. Moreover, factors that inhibited the chaperone network by impairing the stability of the ClpB oligomer, such as natural polyamines, dilution, or high salt, were efficiently counteracted by K-glutamate or betaine. The combined protective, counter-negative and net activatory effects of K-glutamate and betaine, allowed protein disaggregation and refolding under heat-shock temperatures that otherwise cause protein aggregation in vitro and in the cell. Mesophilic organisms may thus benefit from a thermotolerant osmolyte-activated chaperone mechanism that can actively rescue protein aggregates, correctly refold and maintain them in a native state under heat-shock conditions.
Resumo:
Rapport de synthèseObjectifsLe retard de croissance intrautérin (RCIU) est un problème affectant 10% des grossesses et est associé à une morbidité périnatale importante. Dans environ 80% des cas, une étiologie ou un facteur de risque majeur peuvent être identifiés. Mais près de 20% des cas sont considérés comme inexpliqués. La heat shock protéine 60kDa (HSP60) est une protéine fortement immunogène dont la synthèse est considérablement augmentée lors de conditions non- physiologiques. Les HSP60 humaines et bactériennes partagent un haut degré d'homologie de séquence ce qui peut engendrer une maladie auto-immune à la suite d'une infection bactérienne. Nous avons supposé que les RCIU inexpliqués pourraient être la conséquence d'une sensibilisation à l'HSP60 humaine.MéthodesLes RCIU inexpliqués ont été identifiés par mesure échographique avec un doppler normal, sans anomalies décelables chez la mère ou le foetus. Les sera foetaux ont été obtenus par cordocentèse, effectuée lors d'analyse du caryotype en cas de RCIU inexpliqué (groupe d'étude) ou pour le dépistage d'une incompatibilité Rhésus (groupe témoin). Ils ont été testés pour l'antigène HSP60 et les IgG et IgM anti-HSP60 par ELISA ainsi que pour d'autres paramètres immunitaires et hématologiques.RésultatsLes paramètres maternels sont similaires entre les 12 cas du groupe d'étude et les 23 cas du groupe contrôle. L'âge gestationnel moyen lors de la cordocentèse est de 29 semaines. Les IgM anti-HSP60 sont détectés dans 12 cas d'étude (100%) mais dans aucun cas contrôle (p <0,00017), les IgG anti-HSP60 dans 7 cas d'étude (58%) et un seul dans le groupe contrôle (p <0,001). Trois des quatre cas avec les taux d'IgM les plus élevés sont décédés. Il n'y a pas de différences entre les deux groupes quant aux taux d'antigène HSP60 ou d'autres marqueurs immunologiques ou hématologiques.ConclusionLes foetus avec un RCIU inexpliqué expriment un taux élevé d'anticorps IgM et IgG contre l'HSP60 humaine et le taux d'IgM est un facteur prédictif de la mortalité foetale. La détection de ces anticorps indique qu'une perturbation placentaire et une réaction auto-immune foetale liée à l'HSP60 sont associées à ce retard de développement chez le foetus.
Resumo:
Mutations in kerato-epithelin are responsible for a group of hereditary cornea-specific deposition diseases, 5q31-linked corneal dystrophies. These conditions are characterized by progressive accumulation of protein deposits of different ultrastructure. Herein, we studied the corneas with mutations at kerato-epithelin residue Arg-124 resulting in amyloid (R124C), non-amyloid (R124L), and a mixed pattern of deposition (R124H). We found that aggregated kerato-epithelin comprised all types of pathological deposits. Each mutation was associated with characteristic changes of protein turnover in corneal tissue. Amyloidogenesis in R124C corneas was accompanied by the accumulation of N-terminal kerato-epithelin fragments, whereby species of 44 kDa were the major constituents of amyloid fibrils. R124H corneas with prevailing non-amyloid inclusions showed accumulation of a new 66-kDa species altogether with the full-size 68-kDa form. Finally, in R124L cornea with non amyloid deposits, we found only the accumulation of the 68-kDa form. Two-dimensional gels revealed mutation-specific changes in the processing of the full-size protein in all affected corneas. It appears that substitutions at the same residue (Arg-124) result in cornea-specific deposition of kerato-epithelin via distinct aggregation pathways each involving altered turnover of the protein in corneal tissue.
Resumo:
Drosophila neuromuscular junctions (NMJs) represent a powerful model system with which to study glutamatergic synapse formation and remodeling. Several proteins have been implicated in these processes, including components of canonical Wingless (Drosophila Wnt1) signaling and the giant isoforms of the membrane-cytoskeleton linker Ankyrin 2, but possible interconnections and cooperation between these proteins were unknown. Here, we demonstrate that the heterotrimeric G protein Go functions as a transducer of Wingless-Frizzled 2 signaling in the synapse. We identify Ankyrin 2 as a target of Go signaling required for NMJ formation. Moreover, the Go-ankyrin interaction is conserved in the mammalian neurite outgrowth pathway. Without ankyrins, a major switch in the Go-induced neuronal cytoskeleton program is observed, from microtubule-dependent neurite outgrowth to actin-dependent lamellopodial induction. These findings describe a novel mechanism regulating the microtubule cytoskeleton in the nervous system. Our work in Drosophila and mammalian cells suggests that this mechanism might be generally applicable in nervous system development and function.
Resumo:
Summary. Hepatitis C virus (HCV) nonstructural protein 3-4A (NS3-4A) is a complex composed of NS3 and its cofactor NS4A. It harbours serine protease as well as NTPase/RNA helicase activities and is essential for viral polyprotein processing, RNA replication and virion formation. Specific inhibitors of the NS3-4A protease significantly improve sustained virological response rates in patients with chronic hepatitis C when combined with pegylated interferon-α and ribavirin. The NS3-4A protease can also target selected cellular proteins, thereby blocking innate immune pathways and modulating growth factor signalling. Hence, NS3-4A is not only an essential component of the viral replication complex and prime target for antiviral intervention but also a key player in the persistence and pathogenesis of HCV. This review provides a concise update on the biochemical and structural aspects of NS3-4A, its role in the pathogenesis of chronic hepatitis C and the clinical development of NS3-4A protease inhibitors.
Resumo:
Angiogenesis, the development of new blood vessels from preexisting vessels, is a key step in tumor growth, invasion and metastasis formation. Inhibition of tumor angiogenesis is considered as an attractive approach to suppress cancer progression and spreading. Adhesion receptors of the integrin family promote tumor angiogenesis by mediating cell migration, proliferation and survival of angiogenic endothelial cells. Integrins up regulated and highly expressed on neovascular endothelial cells, such as alphaVbeta3 and alpha5beta1, have been considered as relevant targets for anti-angiogenic therapies. Small molecular integrin antagonists or blocking antibodies suppress angiogenesis and tumor progression in many animal models, and some of them are currently being tested in cancer clinical trials as anti-angiogenic agents. COX-2 inhibitors exert anti-cancer effects, at least in part, by inhibiting tumor angiogenesis. We have recently shown that COX-2 inhibitors suppress endothelial cell migration and angiogenesis by preventing alphaVbeta3-mediated and cAMP/PKA-dependent activation of the small GTPases Rac and Cdc42. Here we will review the evidence for the involvement of vascular integrins in mediating angiogenesis and the role of COX-2 metabolites in modulating the cAMP/Protein Kinase A pathway and alphaVbeta3-dependent Rac activation in endothelial cells.
Resumo:
The 20 amino acid residue peptides derived from RecA loop L2 have been shown to be the pairing domain of RecA. The peptides bind to ss- and dsDNA, unstack ssDNA, and pair the ssDNA to its homologous target in a duplex DNA. As shown by circular dichroism, upon binding to DNA the disordered peptides adopt a beta-structure conformation. Here we show that the conformational change of the peptide from random coil to beta-structure is important in binding ss- and dsDNA. The beta-structure in the DNA pairing peptides can be induced by many environmental conditions such as high pH, high concentration, and non-micellar sodium dodecyl sulfate (6 mM). This behavior indicates an intrinsic property of these peptides to form a beta-structure. A beta-structure model for the loop L2 of RecA protein when bound to DNA is thus proposed. The fact that aromatic residues at the central position 203 strongly modulate the peptide binding to DNA and subsequent biochemical activities can be accounted for by the direct effect of the aromatic amino acids on the peptide conformational change. The DNA-pairing domain of RecA visualized by electron microscopy self-assembles into a filamentous structure like RecA. The relevance of such a peptide filamentous structure to the structure of RecA when bound to DNA is discussed.
Resumo:
In bacteria, genetic recombination is catalysed by RecA protein, the product of the recA gene. A human gene that shares homology with Escherichia coli recA (and its yeast homologue RAD51) has been cloned from a testis cDNA library, and its 37 kDa product (hRad51) purified to homogeneity. The human Rad51 protein binds to single- and double-stranded DNA and exhibits DNA-dependent ATPase activity. Using a topological assay, we demonstrate that hRad51 underwinds duplex DNA, in a reaction dependent upon the presence of ATP or its non-hydrolysable analogue ATP gamma S. Complexes formed with single- and double-stranded DNA have been observed by electron microscopy following negative staining. With nicked duplex DNA, hRad51 forms helical nucleoprotein filaments which exhibit the striated appearance characteristic of RecA or yeast Rad51 filaments. Contour length measurements indicate that the DNA is underwound and extended within the nucleoprotein complex. In contrast to yeast Rad51 protein, human Rad51 forms filaments with single-stranded DNA in the presence of ATP/ATP gamma S. These resemble the inactive form of the RecA filament which is observed in the absence of a nucleotide cofactor.