318 resultados para Colonic aberrant crypt foci
Resumo:
Monoubiquitination of the Fanconi anaemia protein FANCD2 is a key event leading to repair of interstrand cross-links. It was reported earlier that FANCD2 co-localizes with NBS1. However, the functional connection between FANCD2 and MRE11 is poorly understood. In this study, we show that inhibition of MRE11, NBS1 or RAD50 leads to a destabilization of FANCD2. FANCD2 accumulated from mid-S to G2 phase within sites containing single-stranded DNA (ssDNA) intermediates, or at sites of DNA damage, such as those created by restriction endonucleases and laser irradiation. Purified FANCD2, a ring-like particle by electron microscopy, preferentially bound ssDNA over various DNA substrates. Inhibition of MRE11 nuclease activity by Mirin decreased the number of FANCD2 foci formed in vivo. We propose that FANCD2 binds to ssDNA arising from MRE11-processed DNA double-strand breaks. Our data establish MRN as a crucial regulator of FANCD2 stability and function in the DNA damage response.
Resumo:
BACKGROUND: People with neurological disease have a much higher risk of both faecal incontinence and constipation than the general population. There is often a fine dividing line between the two conditions, with any management intended to ameliorate, one risking precipitating the other. Bowel problems are observed to be the cause of much anxiety and may reduce quality of life in these people. Current bowel management is largely empirical with a limited research base. OBJECTIVES: To determine the effects of management strategies for faecal incontinence and constipation in people with neurological diseases affecting the central nervous system. SEARCH STRATEGY: We searched the Cochrane Incontinence Group Trials Register, the Cochrane Controlled Trials Register, MEDLINE, EMBASE and all reference lists of relevant articles. Date of the most recent searches: May 2000. SELECTION CRITERIA: All randomised or quasi-randomised trials evaluating any types of conservative, or surgical measure for the management of faecal incontinence and constipation in people with neurological diseases were selected. Specific therapies for the treatment of neurological diseases that indirectly affect bowel dysfunction have also been considered. DATA COLLECTION AND ANALYSIS: All three reviewers assessed the methodological quality of eligible trials and two reviewers independently extracted data from included trials using a range of pre-specified outcome measures. MAIN RESULTS: Only seven trials were identified by the search strategy and all were small and of poor quality. Oral medications for constipation were the subject of four trials. Cisapride does not seem to have clinically useful effects in people with spinal cord injuries (two trials). Psyllium was associated with increased stool frequency in people with Parkinson's disease but not altered colonic transit time (one trial). Some rectal preparations to initiate defecation produced faster results than others (one trial). Different time schedules for administration of rectal medication may produce different bowel responses (one trial). Mechanical evacuation may be more effective than oral or rectal medication (one trial). The clinical significance of any of these results is difficult to interpret. REVIEWER'S CONCLUSIONS: It is not possible to draw any recommendation for bowel care in people with neurological diseases from the trials included in this review. Bowel management for these people must remain empirical until well-designed controlled trials with adequate numbers and clinically relevant outcome measures become available.
Resumo:
BACKGROUND: Mammalian target of rapamycin (mTOR) inhibitors such as rapamycin have shown modest effects in cancer therapy due in part to the removal of a negative feedback loop leading to the activation of the phosphatidylinositol 3-kinase/Akt (PI3K/Akt) signaling pathway. In this report, we have investigated the role of FOXO1, a downstream substrate of the PI3K/Akt pathway in the anticancer efficacy of rapamycin. MATERIALS AND METHODS: Colon cancer cells were treated with rapamycin and FOXO1 phosphorylation was determined by Western blot. Colon cancer cells transfected with a constitutively active mutant of FOXO1 or a control plasmid were treated with rapamycin and the antiproliferative efficacy of rapamycin was monitored. RESULTS: Rapamycin induced the phosphorylation of FOXO1 as well as its translocation from the nucleus to the cytoplasm, leading to FOXO1 inactivation. The expression of an active mutant of FOXO1 in colon cancer cells potentiated the antiproliferative efficacy of rapamycin in vitro and its antitumor efficacy in vivo. CONCLUSION: Taken together these results show that rapamycin-induced FOXO1 inactivation reduces the antitumor efficacy of rapamycin.
Resumo:
Personal results are presented to illustrate the development of immunoscintigraphy for the detection of cancer over the last 12 years, from the early experimental results in nude mice grafted with human colon carcinoma to the most modern form of immunoscintigraphy applied to patients, using I123 labeled Fab fragments from monoclonal anti-CEA antibodies detected by single photon emission computerized tomography (SPECT). The first generation of immunoscintigraphy used I131 labeled, immunoadsorbent purified, polyclonal anti-CEA antibodies and planar scintigraphy, as the detection system. The second generation used I131 labeled monoclonal anti-CEA antibodies and SPECT, while the third generation employed I123 labeled fragments of monoclonal antibodies and SPECT. The improvement in the precision of tumor images with the most recent forms of immunoscintigraphy is obvious. However, we think the usefulness of immunoscintigraphy for routine cancer management has not yet been entirely demonstrated. Further prospective trials are still necessary to determine the precise clinical role of immunoscintigraphy. A case report is presented on a patient with two liver metastases from a sigmoid carcinoma, who received through the hepatic artery a therapeutic dose (100 mCi) of I131 coupled to 40 mg of a mixture of two high affinity anti-CEA monoclonal antibodies. Excellent localisation in the metastases of the I131 labeled antibodies was demonstrated by SPECT and the treatment was well tolerated. The irradiation dose to the tumor, however, was too low at 4300 rads (with 1075 rads to the normal liver and 88 rads to the bone marrow), and no evidence of tumor regression was obtained. Different approaches for increasing the irradiation dose delivered to the tumor by the antibodies are considered.
Resumo:
In 1875, 7 years prior to the description of the Koch bacillus, Klebs visualized the first Streptococcus pneumoniae in pleural fluid. Since then, this organism has played a decisive role in biomedical science. From a biological point of view, it was extensively involved in the development of passive and active immunization by serotherapy and vaccination respectively. Genetic transformation was also first observed in S. pneumoniae, leading to the discovery of DNA. From a clinical point of view, S. pneumoniae is today still a prime cause of otitis media in children and of pneumonia in all age groups, as well as a predominant cause of meningitis and bacteremia. In adults, bacteremia still has a mortality of over 25%. Although S. pneumoniae remained very sensitive to penicillin for many years, penicillin-resistant strains have emerged and increased dramatically over the last 15 years. During this period the frequency of penicillin-resistant isolates has increased from < or = 1% to frequencies varying from 20 to 60% in geographic areas as diverse as South Africa, Spain, France, Hungary, Iceland, Alaska, and numerous regions of the United States and South America. In Switzerland, the current frequency of penicillin-resistant pneumococci ranges between 5 and > or = 10%. The increase in penicillin-resistant pneumococci correlates with the intensive use of beta-lactam antibiotics. The mechanism of resistance is not due to bacterial production of penicillinase but to an alteration of the bacterial target of penicillin, the so-called penicillin-binding proteins. Resistance is subdivided into (1) intermediate level resistance (minimal inhibitory concentration [MIC] of penicillin of 0.1-1 mg/l) and (2) high level resistance (MCI > or = 2 mg/l). The clinical significance of intermediate resistance remains poorly defined. On the other hand, highly resistant strains have been responsible for numerous therapeutic failures, especially in cases of meningitis. Antibiotics recommended against penicillin-resistant pneumococci include cefotaxime, ceftriaxone, imipenem and in some instances vancomycin. However, penicillin-resistant pneumococci tend to present cross-resistances to all the antibiotics of the beta-lactam family and could even become resistant to the last resort drugs mentioned above. Thus, the explosion of resistance to penicillin in pneumococci is a ubiquitous phenomenon which must be fought against by (1) avoiding excessive use of antibiotics, (2) the practice of microbiological sampling of infected foci before treatment, (3) the systematic surveillance of resistance profiles of pneumococci against antibiotics and (4) adequate vaccination of populations at risk.
Resumo:
Les muqueuses respiratoires, genitales et digestives sont continuellement exposées aux antigènes de l?alimentation, à la flore intestinale et aux pathogènes. Cela implique une activité immunologique intense et finement régulée dans ces tissus. On admet que la modulation de ces réponses immunitaires muqueuses s?effectue dans des organes sentinels spécifiques appelés o-MALT (organized mucosal associated lymphoid tissues). Ces processus de modulation et la biologie de ces sites immuno-inducteurs sont peu connus. Ceci est pourtant d?une grande relevance si l?on veut faire un design rationnel de drogues et de vaccins muqueux. Dans l?intestin grèle, ces organes sont composés de follicules multiples et sont appelés plaques de Peyer. Ils sont constitués de follicules enrichis en cellules B comprenant ou non un centre germinatif, de regions interfolliculaires comprenant des cellules T, et d?une région en d ome riche en cellules dendritiques, cellules B naives et cellules T CD4+, surmontée par un epithelium specialisé, le FAE (epithelium associé aux follicules). Le FAE contient des cellules M spécialisées dans le transport de macromolécules et micro-organismes de la lumière intestinale au tissu lymphoide sous-jacent. Ce transport des antigènes est une condition obligatoire pour induire une réponse immunitaire. Les cellules du FAE, outre les cellules M, expriment un programme de différenciation distinct de celui des cellules associées aux villosités. Ceci est characterisé par une baisse des fonctions digestives et de défenses, et l?expression constitutive des chimiokines: CCL20 et CCL25. Le but de l?étude présentée ici est de rechercher les facteurs cellulaires et/ou moléculaire responsables de cette différenciation. Certaines études ont démontré l?importance du contact entre le compartiment mésenchymateux et l?épithelium pour la morphogenèse de ce dernier. En particulier, les molécules de la matrice extracellulaire peuvent activer des gènes clefs qui, à leur tour, vont controler l?adhésion et la differenciation cellulaire. Dans l?intestin, les cellules mésenchymateuses différencient en myofibroblastes qui participent à l?élaboration de la matrice extracellulaire. Dans cette étude, nous avons décrit les différences d?expression de molécules de la matrices sous le FAE et les villosités. Nous avons également montré une absence de myofibroblastes sous le FAE. Suite à plusieurs évidences expérimentales, certains ont proposé une influence des composés présents dans la lumière sur la différenciation et/ou la maturation des plaques de Peyer. La chimiokine CCL20, capable de recruter des cellules initiatrices de la réponse immunitaire, constitue notre seul marqueur positif de FAE. Nous avons pu montrer que la flagelline, un composé du flagelle bactérien, était capable d?induire l?expression de CCL20 in vitro et in vivo. Cet effet n?est pas limité aux cellules du FAE mais est observé sur l?ensemble de l?épithelium intestinal. Molecular mechanisms of FAE differenciation. La signalement induit par la lymphotoxine ß est critique pour l?organogenèse des plaques de Peyer, car des souris déficientes pour cette molécules ou son récepteur n?ont ni plaque de Peyer, ni la plupart des ganglions lymphatiques. Nous avons obtenus plusieurs évidences que la lymphotoxine ß était impliquée dans la régulation du gène CCL20 in vitro et in vivo.<br/><br/>Mucosal surfaces of the respiratory, genital and digestive systems are exposed to food antigens, normal bacterial flora and oral pathogens. This justifies an intense and tuned immunological activity in mucosal tissues. The modulation of immune responses in the mucosa is thought to occur in specific sentinel sites, the organized mucosa associated lymphoid tissues (o-MALT). This immune modulation and the biology of these immune-inductive sites are poorly understood but highly important and relevant in the case of drugs and vaccines design. In the small intestine, these organs (gut associated lymphoid tissue : GALT) consists of single or multiple lymphoid follicles, the so-called Peyer?s patches (PP), with typical B cell-enriched follicles and germinal centers, inter-follicular T cell areas, and a dome region enriched in dendritic cells, naive B cells, and CD4+ T cells under a specialized follicle associated epithelium (FAE). To trigger protective immunity, antigens have to cross the mucosal epithelial barrier. This is achieved by the specialized epithelial M cells of the FAE that are able to take up and transport macromolecules and microorganisms from the environment into the underlying organized lymphoid tissue. The ontogeny of M cells remains controversial: some data are in favor of a distinct cell lineage, while others provide evidence for the conversion of differentiated enterocytes into M cells. In this study we mapped the proliferative, M cells and apoptotic compartments along the FAE. Enterocytes acquire transient M cell features as they leave the crypt and regain enterocyte properties as they move towards the apoptotic compartment at the apex of the FAE, favouring the hypothesis of a plastic phenotype. The follicle-associated epithelium (FAE) is found exclusively over lymphoid follicles in mucosal tissues, including Peyer?s patches. The enterocytes over Peyer?s patches express a distinct phenotype when compared to the villi enterocytes, characterized by the down regulation of digestive and defense functions and the constitutive expression of chemokines, i.e. CCL20 and CCL25. The purpose of this study was to investigate and identify the potential cells and/or molecules instructing FAE differentiation. Contact between the epithelial and the mesenchymal cell compartment is required for gut morphogenesis. Extracellular matrix molecules (ECM) can activate key regulatory genes which in turn control cell adhesion and differentiation. In the gut, mesenchymal cells differentiate into myofibroblats that participate to the elaboration of ECM. We have described a differential expression of extracellular matrix components under the FAE, correlating with the absence of subepithelial myofibroblats. Molecular mechanisms of FAE differenciation. Different studies proposed an influence of the luminal compartment in the differentiation and/or the maturation of PP. CCL20, a chemokine able to recruit cells that initiate adaptive immunity constitutes our first positive FAE molecular marker. We have shown that CCL20 gene expression is inducible in vitro and in vivo in intestinal epithelium by flagellin, a component of bacterial flagella. This effect was not restricted to the FAE. Lymphotoxin ß (LTß) signaling is critical for PPs organogenesis as LT deficient mice as well as LTß-receptor-/- mice lack PPs and most of the lymph nodes (LN). The continuous signaling via LTßR-expressing cells appears necessary for the maintenance throughout the life of PP architecture. We obtained in vitro and in vivo evidence that LTß signalling is involved in CCL20 gene expression.
Resumo:
Résumé Le présent travail de thèse a fait face au défi de lier les changements transcriptionnels dans les neurones du système nerveux central au développement de l'addiction aux drogues. I1 est connu que l'apprentissage induit des modifications au niveau de la structure du cerveau, principalement en changeant la manière dont les neurones sont interconnectés par des synapses. De plus en plus d'évidences soutiennent un scénario selon lequel l'activité neuronale déclenche des cascades de signalisation intracellulaire qui ciblent des facteurs de transcription. Ces derniers peuvent activer la transcription de gènes spécifiques qui codent pour des protéines nécessaires au renforcement des synapses mémorisant ainsi la nouvelle information. Puisque l'addiction peut être considérée comme une forme aberrante d'apprentissage, et que les modifications synaptiques sont connues pour être impliquées dans le processus d'addiction, nous essayons de décrire des mécanismes transcriptionels étant à la base des changements synaptiques induits par les drogues. Comme modèle nous utilisons des cultures primaires des neurones de striatum, d'hippocampe et de cortex de souris ainsi que des tranches de cerveau de rat. Une des caractéristiques communes de quasiment toutes les substances addictives est de pouvoir activer le système mésolimbique dopaminergique provoquant la libération de dopamine sur les neurones du striatum (du noyau accumbens). Dans ce travail de thèse nous démontrons que dans des cultures du striatum, la dopamine induit le facteur de transcription C/EBPβ qui, à son tour, provoque l'expression du gène codant pour la substance P. Ce mécanisme pourrait potentiellement contribuer à la tolérance envers les drogues puisqu'il fait partie d'une rétroaction (feed-back) sur les cellules produisant la dopamine. Etant donné que ces résultats montrent l'importance de C/EBPβ dans la psychopathologie de l'addiction, nous avons également décidé d'étudier les mécanismes fondamentaux de l'activation de la transcription par C/EBPβ. Nos expériences démontrent que trois isoformes activatrices de la famille C/EBP recrutent le coactivateur CBP et provoquent en même temps sa phosphorylation. Enfin, nous montrons que les coactivateurs nommés TORC, nouvellement découverts et clonés, sont capables de détecter la coïncidence d'un signal cAMP et d'une entrée de calcium dans des neurones. Par conséquent les TORCs pourraient contribuer à détecter la coïncidence d'un signal glutamate et d'un signal dopamine dans les neurones de striatum, ce qui pourrait être important pour associer les effets hédonistes de la drogue à l'information contextuelle (par exemple à l'environnement où la drogue a été consommée). Nous sommes les premiers à observer que les TORCs sont nécessaires pour la potentiation à long terme dans l'hippocampe. Summary The present thesis work faced the challenge to link the development of drug addiction to transcriptional changes in the neurons of the central nervous system. Experience and learning are known to induce structural modifications in the brain, and these changes are thought to occur mainly in the way neurons are interconnected by synapses. More and more evidences point to a scenario in which neuronal activity would activate signalization cascades that impinge on transcription factors, which, in turn, would activate genes necessary for the reinforcement of synapses coding for new informations. Given that drug addiction can be considered as an aberrant form of learning and is thought to involve synaptic modifications, we try to elucidate some of the transcriptional mechanisms that could underlie drug-induced synaptic changes. As a model system, we use primary cultures of striatal, cortical and hippocampal neurons dissected from mouse embryos as well as brain slices from rats. One of the common features of virtually all drugs of abuse is to activate the mesocorticolimbic dopaminergic system that results in the release of dopamine onto the neurons of the striatum (nucleus accumbens). In this thesis work we show that in striatal cultures, dopamine induces the transcription factor C/EBPβ that in turn drives the expression of the gene coding for substance P. This mechanism is likely to be important for the drug-induced tolerance in the brain since it might be a part of a feedback acting on dopaminergic neurons. Given the suspected importance of C/EBPβ in drug addiction, we also try to elucidate some aspects of the basic mechanisms by which the C/EBP family activates transcription. We show that three activating members of the C/EBP family recruit the coactivator CBP and trigger its phosphorylation. Finally, we demonstrate that the newly discovered and cloned transcriptional coactivators, named TORCs (transducers of regulated CREB activity) are able to detect the coincidence of a calcium and a cAMP signal in the central nervous system. This way, TORCs could contribute to the detection of a coincidence between a glutamate and a dopamine signal in striatal neurons - a process that is suggested to be important for an association between the rewarding effect of a drug and contextual information (such as the environment where the drug had been taken). We demonstrate that TORCs are required for hippocampal LTP.
Resumo:
BACKGROUND: HOX genes are a family of developmental genes that are expressed neither in the developing forebrain nor in the normal brain. Aberrant expression of a HOX-gene dominated stem-cell signature in glioblastoma has been linked with increased resistance to chemo-radiotherapy and sustained proliferation of glioma initiating cells. Here we describe the epigenetic and genetic alterations and their interactions associated with the expression of this signature in glioblastoma. RESULTS: We observe prominent hypermethylation of the HOXA locus 7p15.2 in glioblastoma in contrast to non-tumoral brain. Hypermethylation is associated with a gain of chromosome 7, a hallmark of glioblastoma, and may compensate for tumor-driven enhanced gene dosage as a rescue mechanism by preventing undue gene expression. We identify the CpG island of the HOXA10 alternative promoter that appears to escape hypermethylation in the HOX-high glioblastoma. An additive effect of gene copy gain at 7p15.2 and DNA methylation at key regulatory CpGs in HOXA10 is significantly associated with HOX-signature expression. Additionally, we show concordance between methylation status and presence of active or inactive chromatin marks in glioblastoma-derived spheres that are HOX-high or HOX-low, respectively. CONCLUSIONS: Based on these findings, we propose co-evolution and interaction between gene copy gain, associated with a gain of chromosome 7, and additional epigenetic alterations as key mechanisms triggering a coordinated, but inappropriate, HOX transcriptional program in glioblastoma.
Resumo:
Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease characterized by a loss of tolerance to multiple endogenous antigens. SLE etiology remains largely unknown, despite recent insight into the immunopathogenesis of the disease. T cells are important in the development of the disease by amplifying the immune response and contributing to organ damage. Aberrant signaling, cytokine secretion, and tissue homing displayed by SLE T cells have been extensively studied and the underlying pathogenic molecular mechanisms are starting to be elucidated. T-cell-targeted treatments are being explored in SLE patients. This review is an update on the T-cell abnormalities and related therapeutic options in SLE.
Resumo:
Enhanced Recovery After Surgery (ERAS) is a multimodal concept combining pre, intra and postoperative evidence-based care elements to reduce surgical stress. ERAS pathways have been shown to significantly reduce morbidity, length of hospital stay and total costs when applied to colorectal surgery. It is therefore considered standard of care in this specialty. There can be no doubt that ERAS principles can be applied also in other major surgeries. However, uncritical application of the guidelines issued from colonic procedures seems inappropriate as the surgical procedures in pelvic cancer surgery differ considerably. This article reports on the first steps of an ERAS project and his introduction in urology.
Resumo:
Chlamydiales are obligate intracellular bacteria including some important pathogens causing trachoma, genital tract infections and pneumonia, among others. They share an atypical division mechanism, which is independent of an FtsZ homologue. However, they divide by binary fission, in a process inhibited by penicillin derivatives, causing the formation of an aberrant form of the bacteria, which is able to survive in the presence of the antibiotic. The paradox of penicillin sensitivity of chlamydial cells in the absence of detectable peptidoglycan (PG) was dubbed the chlamydial anomaly, since no PG modified by enzymes (Pbps) that are the usual target of penicillin could be detected in Chlamydiales. We review here the recent advances in this field with the first direct and indirect evidences of PG-like material in both Chlamydiaceae and Chlamydia-related bacteria. Moreover, PG biosynthesis is required for proper localization of the newly described septal proteins RodZ and NlpD. Taken together, these new results set the stage for a better understanding of the role of PG and septal proteins in the division mechanism of Chlamydiales and illuminate the long-standing chlamydial anomaly. Moreover, understanding the chlamydial division mechanism is critical for the development of new antibiotics for the treatment of chlamydial chronic infections.
Resumo:
BACKGROUND: Visceral obesity (VO) increases technical difficulty in laparoscopic surgery. The body mass index (BMI) does not always correlate to intra-abdominal fat distribution. Our hypothesis was that simple anthropometric measures that reflect VO, could predict technical difficulty in laparoscopic colorectal surgery, as reflected by the operative time, more accurately than the BMI. METHODS: Charts of all consecutive patients who underwent laparoscopic left colon resection in our institution between 2007 and 2010 were reviewed retrospectively. On a preoperative CT scan, anthropometric measures were taken on an axial plane at the L4-L5 level. Demographic, operative and anthropometric CT measures were correlated with the operative time. Logistic regression analysis was performed to assess the value of anthropometric CT measures or BMI to predict the duration of the colectomy. RESULTS: 121 patients with elective left colon resection for benign (56%) or malignant disease (44%) were included. There were 74 sigmoid resections (61%), 21 left hemicolectomies (17%) and 26 low anterior resections (22%). A longer sagittal abdominal diameter (≥24.8 cm) was significantly associated with longer corrected operative time (248 vs. 228 min, p = 0.043). In multivariate analysis, greater sagittal abdominal diameter, sagittal internal diameter and abdominal perimeter were significantly associated with longer operative time. No significant association was found for the BMI neither in univariate nor in multivariate analysis. CONCLUSIONS: This study suggests that simple linear measures taken on a CT scan, such as sagittal abdominal diameter, sagittal internal diameter and abdominal perimeter, may predict longer operative time in laparoscopic left colonic resections more accurately than BMI.
Resumo:
Jeune asphyxiating thoracic dystrophy (JATD) is a skeletal dysplasia characterized by a small thoracic cage and a range of skeletal and extra-skeletal anomalies. JATD is genetically heterogeneous with at least nine genes identified, all encoding ciliary proteins, hence the classification of JATD as a skeletal ciliopathy. Consistent with the observation that the heterogeneous molecular basis of JATD has not been fully determined yet, we have identified two consanguineous Saudi families segregating JATD who share a single identical ancestral homozygous haplotype among the affected members. Whole-exome sequencing revealed a single novel variant within the disease haplotype in CEP120, which encodes a core centriolar protein. Subsequent targeted sequencing of CEP120 in Saudi and European JATD cohorts identified two additional families with the same missense mutation. Combining the four families in linkage analysis confirmed a significant genome-wide linkage signal at the CEP120 locus. This missense change alters a highly conserved amino acid within CEP120 (p.Ala199Pro). In addition, we show marked reduction of cilia and abnormal number of centrioles in fibroblasts from one affected individual. Inhibition of the CEP120 ortholog in zebrafish produced pleiotropic phenotypes characteristic of cilia defects including abnormal body curvature, hydrocephalus, otolith defects and abnormal renal, head and craniofacial development. We also demonstrate that in CEP120 morphants, cilia are shortened in the neural tube and disorganized in the pronephros. These results are consistent with aberrant CEP120 being implicated in the pathogenesis of JATD and expand the role of centriolar proteins in skeletal ciliopathies.
Resumo:
BACKGROUND: Infliximab (IFX) has been used for over a decade worldwide. Less is known about the natural history of IFX use beyond a few years and which patients are more likely to sustain benefits. METHODS: Patients with Crohn's disease (CD) exposed to IFX from Massachusetts General Hospital, Boston, Saint-Antoine Hospital, Paris, and the Swiss IBD Cohort Study were identified through retrospective and prospective data collection, complemented by chart abstraction of electronic medical records. We compared long-term users of IFX (>5 yr of treatment, long-term users of infliximab [LTUI]), with non-LTUI patients to identify prognostic factors. RESULTS: We pooled data on 1014 patients with CD from 3 different databases, of whom 250 were defined as LTUI. The comparison group comprised 290 patients with CD who discontinued IFX: 48 primary nonresponses, 95 loss of responses, and 147 adverse events. Factors associated with LTUI were colonic involvements and an earlier age at the start of IFX. The prevalence of active smokers and obese patients differed markedly, but inversely, between American and European centers but did not impact outcome. The discontinuation rate was stable around 3% to 6%, each year from years 3 to 10. CONCLUSIONS: Young age at start of IFX and colonic CD are factors associated with a beneficial long-term use of IFX. After 5 years of IFX, there is still a 3% to 5% discontinuation rate annually. Several factors associated with a good initial response such as nonsmoker and shorter disease duration at IFX initiation do not seem associated with a longer term response.
Resumo:
Background: Studies evaluating risk factors associated with an "aggressive" disease course in ulcerative colitis (UC) are scarce. A recent definition of "aggressive" UC incorporated the following characteristics: 1) high relapse rate, 2) need for surgery, 3) development of colorectal cancer, and 4) presence of extraintestinal manifestations (EIM). The following factors for an aggressive / disabling disease course in UC have been identified so far: age < 40 years at S140 Poster presentations UC diagnosis, pancolitis, concomitant primary sclerosing cholangitis, and deep ulcerations of the colonic mucosa. We aimed to evaluate risk factors for an "aggressive" disease course in UC patients. Methods: Data from the Swiss IBD cohort study were analyzed. Patients were recruited from university centers (80%), regional hospitals (19%), and private practices (1%). We applied the following definition for "aggressive" UC: 1) patients ever treated with TNFantagonists or calcineurin inhibitors (tacrolimus / cyclosporine), and 2) need for (procto)-colectomy. Non-normal data are presented as median and interquartile range [IQR].