309 resultados para CHLORINE-RESISTANT MEMBRANE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: To evaluate the long-term efficacy of multilayer amniotic membrane transplantation for reconstruction of epithelium and stroma in non-traumatic corneal perforations (less than 2 mm) or deep ulcers with descemetocele.Design: Retrospective, non-comparative, interventional case series.Patients and Methods: Eleven consecutive patients with non-traumatic corneal perforations or deep corneal ulcers with descemetocele refractory to conventional treatments: herpetic or zoster keratitis (n = 4), Sjögren's syndrome (n = 2), rosacea (n = 1), hydrops (n = 1), mucous membrane pemphigoid (n = 1), bacterial keratitis (n = 1) and perforation after protontherapy for melanoma (n = 1). Intervention was: multilayer amniotic membrane transplantation with cryopreserved amniotic membrane. Complication rate and clinical outcome were evaluated in this long-term follow-up.Results: Mean follow-up was 32 months (12 to 60). Integration of the multilayer amniotic membrane was obtained in 10 cases after one year. Corneal epithelium healed above the membrane in 10 cases within 3 weeks and remained stable after 32 months in 9 cases. Thickness of the stroma was increased and remained stable during the follow-up in 9 cases. In one case herpetic keratitis recurred with a corneal perforation. The clearing of the amniotic membrane was gradually obtained over a period of 11 months. Complications occurred in 15 % of the eyes during the long-term follow-up.Conclusion: Multilayer amniotic membrane transplantation is a safe and efficient technique for a long restoration of the corneal integrity after non-traumatic corneal perforations or deep corneal ulcers with descemetocele. Long-term prognosis of these eyes depends of the gravity of the initial disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quinupristin-dalfopristin (Q-D) is an injectable streptogramin active against most gram-positive pathogens, including methicillin-resistant Staphylococcus aureus (MRSA). In experimental endocarditis, however, Q-D was less efficacious against MRSA isolates constitutively resistant to macrolide-lincosamide-streptogram B (C-MLS(B)) than against MLS(B)-susceptible isolates. To circumvent this problem, we used the checkerboard method to screen drug combinations that would increase the efficacy of Q-D against such bacteria. beta-Lactams consistently exhibited additive or synergistic activity with Q-D. Glycopeptides, quinolones, and aminoglycosides were indifferent. No drugs were antagonistic. The positive Q-D-beta-lactam interaction was independent of MLS(B) or beta-lactam resistance. Moreover, addition of Q-D at one-fourth the MIC to flucloxacillin-containing plates decreased the flucloxacillin MIC for MRSA from 500 to 1,000 mg/liter to 30 to 60 mg/liter. Yet, Q-D-beta-lactam combinations were not synergistic in bactericidal tests. Rats with aortic vegetations were infected with two C-MLS(B)-resistant MRSA isolates (isolates AW7 and P8) and were treated for 3 or 5 days with drug dosages simulating the following treatments in humans: (i) Q-D at 7 mg/kg two times a day (b.i.d.) (a relatively low dosage purposely used to help detect positive drug interactions), (ii) cefamandole at constant levels in serum of 30 mg/liter, (iii) cefepime at 2 g b.i.d., (iv) Q-D combined with either cefamandole or cefepime. Any of the drugs used alone resulted in treatment failure. In contrast, Q-D plus either cefamandole or cefepime significantly decreased valve infection compared to the levels of infection for both untreated controls and those that received monotherapy (P < 0.05). Importantly, Q-D prevented the growth of highly beta-lactam-resistant MRSA in vivo. The mechanism of this beneficial drug interaction is unknown. However, Q-D-beta-lactam combinations might be useful for the treatment of complicated infections caused by multiple organisms, including MRSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND & AIMS: The hepatitis C virus (HCV) NS3-4A protease is essential for the HCV life cycle and a prime target of antiviral treatment strategies. Protease inhibitors, however, are limited by emergence of resistance-associated amino acid variants (RAVs). The capacity to cleave and inactivate mitochondrial antiviral-signaling protein (MAVS) in the RIG-I-signaling pathway is a cardinal feature of NS3-4A, by which HCV blocks induction of interferon-(IFN)-β, thereby promoting viral persistence. Here, we aimed to investigate the impact of NS3-4A RAVs on MAVS cleavage. METHODS: The impact of NS3-4A RAVs on MAVS cleavage was assessed using immunoblot analyses, luciferase reporter assays and molecular dynamics simulations to study the underlying molecular principles. IFN-β was quantified in serum from patients with different NS3-4A RAVs. RESULTS: We show that macrocyclic NS3-4A RAVS with substitutions at residue D168 of the protease result in an increased capacity of NS3-4A to cleave MAVS and suppress IFN-β induction compared with a comprehensive panel of RAVs and wild type HCV. Mechanistically, we show the reconstitution of a tight network of electrostatic interactions between protease and the peptide substrate that allows much stronger binding of MAVS to D168 RAVs than to the wild-type protease. Accordingly, we could show IFN-β serum levels to be lower in patients with treatment failure due to the selection of D168 variants compared to R155 RAVs. CONCLUSIONS: Our data constitutes a proof of concept that the selection of RAVs against specific classes of direct antivirals can lead to the predominance of viral variants with possibly adverse pathogenic characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Severe acute refractory respiratory failure is considered a life-threatening situation, with a high mortality of 40 to 60%. When conservative oxygenation methods fail, a lifesaving measure is the introduction of extracorporeal membrane oxygenation (ECMO). Venovenous ECMO (VV-ECMO) is a preferred modality of support for patients with refractory acute respiratory failure. Specifically, bicaval VV-ECMO is a well-recognized and validated therapy, where single or double periphery venous access is used for the insertion of two differently sized cannulas in order to achieve adequate blood oxygenation. Compared to venoarterial ECMO, in VV-ECMO, the rate of complications, such as thrombosis, bleeding, infection and ischemic events, is lower. On the other hand, the size and insertion location is an obstacle to patient mobilization. This is a considerable problem for patients where the time interval for lung recovery and the bridge to the transplantation is prolonged. To address this issue, a dual-lumen, single venovenous cannula was introduced. Here, by insertion of one single catheter in one target vessel, in a majority of cases in the right internal jugular vein, satisfactory oxygenation of the patient is achieved. In this form, the instituted VV-ECMO enables patient mobility, better physical rehabilitation and facilitates pulmonary extubation and toilet. However, relatively early, after the first short-term reports were published, a relatively high complication rate became evident. In the recent literature, the complication rate using actual commercially available double-lumen venovenous cannula ranges between 5 and 30%. These cases were mostly conjoined to the implantation phase or the early postoperative phase and vary between right heart perforation to migration of the cannula. This review focuses on complications allied to commercially available dual-lumen, single, venovenous cannula implantation, pointing out the critical segments of the implantation process and analyzing the structure of the device.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The antibiotic pipeline continues to diminish and the majority of the public remains unaware of this critical situation. The cause of the decline of antibiotic development is multifactorial and currently most ICUs are confronted with the challenge of multidrug-resistant organisms. Antimicrobial multidrug resistance is expanding all over the world, with extreme and pandrug resistance being increasingly encountered, especially in healthcare-associated infections in large highly specialized hospitals. Antibiotic stewardship for critically ill patients translated into the implementation of specific guidelines, largely promoted by the Surviving Sepsis Campaign, targeted at education to optimize choice, dosage, and duration of antibiotics in order to improve outcomes and reduce the development of resistance. Inappropriate antimicrobial therapy, meaning the selection of an antibiotic to which the causative pathogen is resistant, is a consistent predictor of poor outcomes in septic patients. Therefore, pharmacokinetically/pharmacodynamically optimized dosing regimens should be given to all patients empirically and, once the pathogen and susceptibility are known, local stewardship practices may be employed on the basis of clinical response to redefine an appropriate regimen for the patient. This review will focus on the most severely ill patients, for whom substantial progress in organ support along with diagnostic and therapeutic strategies markedly increased the risk of nosocomial infections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Membrane fusion is induced by SNARE complexes that are anchored in both fusion partners. SNAREs zipper up from the N to C terminus bringing the two membranes into close apposition. Their transmembrane domains (TMDs) might be mere anchoring devices, deforming bilayers by mechanical force. Structural studies suggested that TMDs might also perturb lipid structure by undergoing conformational transitions or by zipping up into the bilayer. Here, we tested this latter hypothesis, which predicts that the activity of SNAREs should depend on the primary sequence of their TMDs. We replaced the TMDs of all vacuolar SNAREs (Nyv1, Vam3, and Vti1) by a lipid anchor, by a TMD from a protein unrelated to the membrane fusion machinery, or by artificial leucine-valine sequences. Individual exchange of the native SNARE TMDs against an unrelated transmembrane anchor or an artificial leucine-valine sequence yielded normal fusion activities. Fusion activity was also preserved upon pairwise exchange of the TMDs against unrelated peptides, which eliminates the possibility for specific TMD-TMD interactions. Thus, a specific primary sequence or zippering beyond the SNARE domains is not a prerequisite for fusion. Lipid-anchored Vti1 was fully active, and lipid-anchored Nyv1 permitted the reaction to proceed up to hemifusion, and lipid-anchored Vam3 interfered already before hemifusion. The unequal contribution of proteinaceous TMDs on Vam3 and Nyv1 suggests that Q- and R-SNAREs might make different contributions to the hemifusion intermediate and the opening of the fusion pore. Furthermore, our data support the view that SNARE TMDs serve as nonspecific membrane anchors in vacuole fusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The antibiotic susceptibility and molecular epidemiology of Panton-Valentine leukocidin (PVL)-positive meticillin-resistant Staphylococcus aureus (MRSA) isolates reported from 17 countries in the Americas, Europe and, Australia-Asia were analysed. Among a total of 3236 non-duplicate isolates, the lowest susceptibility was observed to erythromycin in all regions. Susceptibility to ciprofloxacin showed large variation (25%, 75% and 84% in the Americas, Europe and Australia-Asia, respectively). Two vancomycin-intermediate PVL-positive MRSA isolates were reported, one from Hong Kong and the other from The Netherlands. Resistance to trimethoprim/sulfamethoxazole and linezolid was <1%. Among 1798 MRSA isolates from 13 countries that were tested for the requested 10 non-β-lactam antibiotics, 49.4% were multisusceptible. However, multiresistant isolates (resistant to at least three classes of non-β-lactam antibiotics) were reported from all regions. Sequence type 30 (ST30) was reported worldwide, whereas ST80 and ST93 were exclusive to Europe and Australia, respectively. USA300 and related clones (ST8) are progressively replacing the ST80 clone in several European countries. Eight major clusters were discriminated by multilocus variable-number tandem repeat assay (MLVA), showing a certain geographic specificity. PVL-positive MRSA isolates frequently remain multisusceptible to non-β-lactam agents, but multiresistance is already prevalent in all regions. Surveillance of MRSA susceptibility patterns should be monitored to provide clinicians with the most current information regarding changes in resistance patterns.