156 resultados para walking tours
Resumo:
The development and maintenance of excess body mass in many children is partly attributable to levels of physical activity that are lower than the recommended 60 minutes/day. Walking is a recommended form of physical activity for obese children, due to its convenience and perceived ease of adoption. Unfortunately, studies that have used objective physical activity assessment continue to report low step counts and levels of physical activity in obese children. This may be due to physiological and/or biomechanical factors that make walking more difficult for obese children. The purpose of this review is to highlight the current recommended and measured levels of physical activity for children and to discuss the physiological and biomechanical challenges of walking for obese children that may help explain why these children are not meeting physical activity goals.
Resumo:
OBJECTIVE: To compare the mechanical external work (Wext ) and pendular energy transduction (Rstep ) at spontaneous walking speed (Ss ) in individuals with Prader-Willi syndrome (PWS) versus subjects with nonsyndromal obesity (OB) to investigate whether the early onset of obesity allows PWS subjects to adopt energy conserving gait mechanics. DESIGN AND METHODS: Wext and Rstep were computed using kinematic data acquired by an optoelectronic system and compared in 15 PWS (BMI = 39.5 ± 1.8 kg m(-2) ; 26.7 ± 1.5 year) and 15 OB (BMI = 39.3 ± 1.0 kg m(-2) ; 28.7 ± 1.9 year) adults matched for gender, age and BMI and walking at Ss . RESULTS: Ss was significantly lower in PWS (0.98 ± 0.03 m s(-1) ) than in OB (1.20 ± 0.02 m s(-1) ; P < 0.001). There were no significant differences in Wext per kilogram between groups (PWS: 0.37 ± 0.04 J kg(-1) m(-1) ; OB: 0.40 ± 0.05 J kg(-1) m(-1) ; P = 0.66) and in Rstep (PWS: 69.9 ± 2.9%; OB: 67.7 ± 2.4%; P = 0.56). However, Rstep normalized to Froude number (Rstep /Fr) was significantly greater in PWS (6.0 ± 0.6) than in OB (3.8 ± 0.2; P = 0.001). Moreover, Rstep /Fr was inversely correlated with age of obesity onset (r = -0.49; P = 0.006) and positively correlated with obesity duration (r = 0.38; P = 0.036). CONCLUSION: Individuals with PWS seem to alter their gait to improve pendular energy transduction as a result of precocious and chronic adaptation to loading.
Resumo:
Decline in gait stability has been associated with increased fall risk in older adults. Reliable and clinically feasible methods of gait instability assessment are needed. This study evaluated the relative and absolute reliability and concurrent validity of the testing procedure of the clinical version of the Narrow Path Walking Test (NPWT) under single task (ST) and dual task (DT) conditions. Thirty independent community-dwelling older adults (65-87 years) were tested twice. Participants were instructed to walk within the 6-m narrow path without stepping out. Trial time, number of steps, trial velocity, number of step errors, and number of cognitive task errors were determined. Intraclass correlation coefficients (ICCs) were calculated as indices of agreement, and a graphic approach called "mountain plot" was applied to help interpret the direction and magnitude of disagreements between testing procedures. Smallest detectable change and smallest real difference (SRD) were computed to determine clinically relevant improvement at group and individual levels, respectively. Concurrent validity was assessed using Performance Oriented Mobility Assessment Tool (POMA) and the Short Physical Performance Battery (SPPB). Test-retest agreement (ICC1,2) varied from 0.77 to 0.92 in ST and from 0.78 to 0.92 in DT conditions, with no apparent systematic differences between testing procedures demonstrated by the mountain plot graphs. Smallest detectable change and smallest real change were small for motor task performance and larger for cognitive errors. Significant correlations were observed for trial velocity and trial time with POMA and SPPB. The present results indicate that the NPWT testing procedure is highly reliable and reproducible.
Resumo:
Body accelerations during human walking were recorded by a portable measuring device. A new method for parameterizing body accelerations and finding the pattern of walking is outlined. Two neural networks were designed to recognize each pattern and estimate the speed and incline of walking. Six subjects performed treadmill walking followed by self-paced walking on an outdoor test circuit involving roads of various inclines. The neural networks were first "trained" by known patterns of treadmill walking. Then the inclines, the speeds, and the distance covered during overground walking (outdoor circuit) were estimated. The results show a good agreement between actual and predicted variables. The standard deviation of estimated incline was less than 2.6% and the maximum of the coefficient of variation of speed estimation is 6%. To the best of our knowledge, these results constitute the first assessment of speed, incline and distance covered during level and slope walking and offer investigators a new tool for assessing levels of outdoor physical activity.
Resumo:
OBJECTIVE: To describe a method to obtain a profile of the duration and intensity (speed) of walking periods over 24 hours in women under free-living conditions. DESIGN: A new method based on accelerometry was designed for analyzing walking activity. In order to take into account inter-individual variability of acceleration, an individual calibration process was used. Different experiments were performed to highlight the variability of acceleration vs walking speed relationship, to analyze the speed prediction accuracy of the method, and to test the assessment of walking distance and duration over 24-h. SUBJECTS: Twenty-eight women were studied (mean+/-s.d.) age: 39.3+/-8.9 y; body mass: 79.7+/-11.1 kg; body height: 162.9+/-5.4 cm; and body mass index (BMI) 30.0+/-3.8 kg/m(2). RESULTS: Accelerometer output was significantly correlated with speed during treadmill walking (r=0.95, P<0.01), and short unconstrained walks (r=0.86, P<0.01), although with a large inter-individual variation of the regression parameters. By using individual calibration, it was possible to predict walking speed on a standard urban circuit (predicted vs measured r=0.93, P<0.01, s.e.e.=0.51 km/h). In the free-living experiment, women spent on average 79.9+/-36.0 (range: 31.7-168.2) min/day in displacement activities, from which discontinuous short walking activities represented about 2/3 and continuous ones 1/3. Total walking distance averaged 2.1+/-1.2 (range: 0.4-4.7) km/day. It was performed at an average speed of 5.0+/-0.5 (range: 4.1-6.0) km/h. CONCLUSION: An accelerometer measuring the anteroposterior acceleration of the body can estimate walking speed together with the pattern, intensity and duration of daily walking activity.
Resumo:
Background : This study aimed to use plantar pressure analysis in relatively long-distance walking for objective outcome evaluation of ankle osteoarthritis treatments, i.e., ankle arthrodesis and total ankle replacement.Methods : Forty-seven subjects in four groups: three patient groups and controls, participated in the study. Each subject walked twice in 50-m trials. Plantar pressure under the pathological foot was measured using pressure insoles. Six parameters: initial contact time, terminal contact time, maximum force time, peak pressure time, maximum force and peak pressure were calculated and averaged over trials in ten regions of foot. The parameters in each region were compared between patient groups and controls and their effect size was estimated. Besides, the correlations between pressure parameters and clinical scales were calculated.Findings : We observed based on temporal parameters that patients postpone the heel-off event, when high force in forefoot and high ankle moment happens. Also based on maximum force and peak pressure, the patients apply smoothened maximum forces on the affected foot. In ten regions, some parameters showed improvements after total ankle replacement, some showed alteration of foot function after ankle arthrodesis and some others showed still abnormality after both surgical treatments. These parameters showed also significant correlation with clinical scales in at least two regions of foot.Interpretation : Plantar pressure parameters in relatively long-distance trials showed to be strong tools for outcome evaluation of ankle osteoarthritis treatments. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Introduction: Ankle arthrodesis (AD) and total ankle replacement (TAR) are typical treatments for ankle osteoarthritis (AO). Despite clinical interest, there is a lack of their outcome evaluation using objective criteria. Gait analysis and plantar pressure assessment are appropriate to detect pathologies in orthopaedics but they are mostly used in lab with few gait cycles. In this study, we propose an ambulatory device based on inertial and plantar pressure sensors to compare the gait during long-distance trials between healthy subjects (H) and patients with AO or treated by AD and TAR. Methods: Our study included four groups: 11 patients with AO, 9 treated by TAR, 7 treated by AD and 6 control subjects. An ambulatory system (Physilog®, CH) was used for gait analysis; plantar pressure measurements were done using a portable insole (Pedar®-X, DE). The subjects were asked to walk 50 meters in two trials. Mean value and coefficient of variation of spatio-temporal gait parameters were calculated for each trial. Pressure distribution was analyzed in ten subregions of foot. All parameters were compared among the four groups using multi-level model-based statistical analysis. Results: Significant difference (p <0.05) with control was noticed for AO patients in maximum force in medial hindfoot and forefoot and in central forefoot. These differences were no longer significant in TAR and AD groups. Cadence and speed of all pathologic groups showed significant difference with control. Both treatments showed a significant improvement in double support and stance. TAR decreased variability in speed, stride length and knee ROM. Conclusions: In spite of a small sample size, this study showed that ankle function after AO treatments can be evaluated objectively based on plantar pressure and spatio-temporal gait parameters measured during unconstrained walking outside the lab. The combination of these two ambulatory techniques provides a promising way to evaluate foot function in clinics.
Resumo:
PURPOSE: This descriptive article illustrates the application of Global Positioning System (GPS) professional receivers in the field of locomotion studies. The technological challenge was to assess the external mechanical work in outdoor walking. METHODS: Five subjects walked five times during 5 min on an athletic track at different imposed stride frequency (from 70-130 steps x min(-1)). A differential GPS system (carrier phase analysis) measured the variation of the position of the trunk at 5 Hz. A portable indirect calorimeter recorded breath-by-breath energy expenditure. RESULTS: For a walking speed of 1.05 +/- 0.11 m x s(-1), the vertical lift of the trunk (43 +/- 14 mm) induced a power of 46.0 +/- 20.4 W. The average speed variation per step (0.15 +/- 0.03 m x s(-1)) produced a kinetic power of 16.9 +/- 7.2 W. As compared with commonly admitted values, the energy exchange (recovery) between the two energy components was low (39.1 +/- 10.0%), which induced an overestimated mechanical power (38.9 +/- 18.3 W or 0.60 W x kg(-1) body mass) and a high net mechanical efficiency (26.9 +/- 5.8%). CONCLUSION: We assumed that the cause of the overestimation was an unwanted oscillation of the GPS antenna. It is concluded that GPS (in phase mode) is now able to record small body movements during human locomotion, and constitutes a promising tool for gait analysis of outdoor unrestrained walking. However, the design of the receiver and the antenna must be adapted to human experiments and a thorough validation study remains to be conducted.
Resumo:
Activity monitors based on accelerometry are used to predict the speed and energy cost of walking at 0% slope, but not at other inclinations. Parallel measurements of body accelerations and altitude variation were studied to determine whether walking speed prediction could be improved. Fourteen subjects walked twice along a 1.3 km circuit with substantial slope variations (-17% to +17%). The parameters recorded were body acceleration using a uni-axial accelerometer, altitude variation using differential barometry, and walking speed using satellite positioning (DGPS). Linear regressions were calculated between acceleration and walking speed, and between acceleration/altitude and walking speed. These predictive models, calculated using the data from the first circuit run, were used to predict speed during the second circuit. Finally the predicted velocity was compared with the measured one. The result was that acceleration alone failed to predict speed (mean r = 0.4). Adding altitude variation improved the prediction (mean r = 0.7). With regard to the altitude/acceleration-speed relationship, substantial inter-individual variation was found. It is concluded that accelerometry, combined with altitude measurement, can assess position variations of humans provided inter-individual variation is taken into account. It is also confirmed that DGPS can be used for outdoor walking speed measurements, opening up new perspectives in the field of biomechanics.
Resumo:
BACKGROUND: Lower ambulatory performance with aging may be related to a reduced oxidative capacity within skeletal muscle. This study examined the associations between skeletal muscle mitochondrial capacity and efficiency with walking performance in a group of older adults. METHODS: Thirty-seven older adults (mean age 78 years; 21 men and 16 women) completed an aerobic capacity (VO peak) test and measurement of preferred walking speed over 400 m. Maximal coupled (State 3; St3) mitochondrial respiration was determined by high-resolution respirometry in saponin-permeabilized myofibers obtained from percutanous biopsies of vastus lateralis (n = 22). Maximal phosphorylation capacity (ATP) of vastus lateralis was determined in vivo by P magnetic resonance spectroscopy (n = 30). Quadriceps contractile volume was determined by magnetic resonance imaging. Mitochondrial efficiency (max ATP production/max O consumption) was characterized using ATP per St3 respiration (ATP/St3). RESULTS: In vitro St3 respiration was significantly correlated with in vivo ATP (r = .47, p = .004). Total oxidative capacity of the quadriceps (St3*quadriceps contractile volume) was a determinant of VO peak (r = .33, p = .006). ATP (r = .158, p = .03) and VO peak (r = .475, p < .0001) were correlated with preferred walking speed. Inclusion of both ATP/St3 and VO peak in a multiple linear regression model improved the prediction of preferred walking speed (r = .647, p < .0001), suggesting that mitochondrial efficiency is an important determinant for preferred walking speed. CONCLUSIONS: Lower mitochondrial capacity and efficiency were both associated with slower walking speed within a group of older participants with a wide range of function. In addition to aerobic capacity, lower mitochondrial capacity and efficiency likely play roles in slowing gait speed with age.
Resumo:
Accurate measurement of knee kinematics during functional activities suffers mainly from soft tissue artifact (STA): the combination of local surface deformations and rigid movement of markers relative to the underlying bone (also called rigid STA movement: RSTAM). This study proposes to assess RSTAM on the thigh, shank, and knee joint and to observe possible features between subjects. Nineteen subjects with knee arthroplasty were asked to walk on a treadmill while a biplane fluoroscopic system (X-rays) and a stereophotogrammetric system (skin markers) recorded their knee movement. The RSTAM was defined as the rigid movement of the cluster of skin markers relative to the prosthesis. The results showed that RSTAM amplitude represents approximately 80-100% of the STA. The vertical axis of the anatomical frame of the femur was influenced the most by RSTAM. Combined with tibial error, internal/external rotation angle and distraction-compression were the knee kinematics parameters most affected by RSTAM during the gait cycle, with average rms values of 3.8° and 11.1 mm. This study highlighted higher RSTAM during the swing phase particularly in the thigh segment and suggests new features for RSTAM such as the particular shape of some RSTAM waveforms and the absence of RSTAM in certain kinematics during the gait phases. The comparison of coefficient of multiple correlations showed some similarities of RSTAM between subjects, while some correlations were found with gait speed and BMI. These new insights could potentially allow the development of new methods of compensation to avoid STA.