139 resultados para thin interpolating sequence
Resumo:
The major macromolecules on the surface of the parasitic protozoan Leishmania major appear to be down-regulated during transformation of the parasite from an insect-dwelling promastigote stage to an intracellular amastigote stage that invades mammalian macrophages. In contrast, the major parasite glycolipids, the glycoinositol phospholipids (GIPLs), are shown here to be expressed at near-constant levels in both developmental stages. The structures of the GIPLs from tissue-derived amastigotes have been determined by h.p.l.c. analysis of the deaminated and reduced glycan head groups, and by chemical and enzymic sequencing. The deduced structures appear to form a complete biosynthetic series, ranging from Man alpha 1-4GlcN-phosphatidylinositol (PI) to Gal alpha 1-3Galf beta 1-3Man alpha 1-3Man alpha 1-4GlcN-PI (GIPL-2). A small proportion of GIPL-2 was further extended by addition of a Gal residue in either alpha 1-6 or beta 1-3 linkage. From g.c.-m.s. analysis and mild base treatment, all the GIPLs were shown to contain either alkylacylglycerol or lyso-alkylglycerol lipid moieties, where the alkyl chains were predominantly C18:0, with lower levels of C20:0, C22:0 and C24:0. L. major amastigotes also contained at least two PI-specific phospholipase C-resistant glycolipids which are absent from promastigotes. These neutral glycolipids were resistant to both mild acid and mild base hydrolysis, contained terminal beta-Gal residues and were not lost during extensive purification of amastigotes from host cell membranes. It is likely that these glycolipids are glycosphingolipids acquired from the mammalian host. The GIPL profile of L. major amastigotes is compared with the profiles found in L. major promastigotes and L. donovani amastigotes.
Resumo:
Forensic examinations of ink have been performed since the beginning of the 20th century. Since the 1960s, the International Ink Library, maintained by the United States Secret Service, has supported those analyses. Until 2009, the search and identification of inks were essentially performed manually. This paper describes the results of a project designed to improve ink samples' analytical and search processes. The project focused on the development of improved standardization procedures to ensure the best possible reproducibility between analyses run on different HPTLC plates. The successful implementation of this new calibration method enabled the development of mathematical algorithms and of a software package to complement the existing ink library.
Design of a Control Slide for Cyanoacrylate Polymerization : Application to the CA-Bluestar Sequence
Resumo:
Casework expercience has shown that, in some cases, long exposures of surfaces subjected to cyanoacrylate (CA) fuming had detrimental effects on the subsequent application of Bluestar. This study aimed to develop a control mechanism to monitor the amount of CA deposited prior to the subsequent treatment. A control slide bearing spots of sodium hydroxide (NaOH) of known concentrations and volume was designed and validated against both scanning electron microscopy (SEM) observations and latent print examiners' assessments of the quality of the developed marks. The control slide allows one to define three levels of development that were used to monitor the Bluestar reaction on depleting footwear marks left in diluted blood. The appropriate conditions for a successful application of both CA and Bluestar were determined.
Resumo:
The large spatial inhomogeneity in transmit B, field (B-1(+)) observable in human MR images at hi h static magnetic fields (B-0) severely impairs image quality. To overcome this effect in brain T-1-weighted images the, MPRAGE sequence was modified to generate two different images at different inversion times MP2RAGE By combining the two images in a novel fashion, it was possible to create T-1-weigthed images where the result image was free of proton density contrast, T-2* contrast, reception bias field, and, to first order transmit field inhomogeneity. MP2RAGE sequence parameters were optimized using Bloch equations to maximize contrast-to-noise ratio per unit of time between brain tissues and minimize the effect of B-1(+) variations through space. Images of high anatomical quality and excellent brain tissue differentiation suitable for applications such as segmentation and voxel-based morphometry were obtained at 3 and 7 T. From such T-1-weighted images, acquired within 12 min, high-resolution 3D T-1 maps were routinely calculated at 7 T with sub-millimeter voxel resolution (0.65-0.85 mm isotropic). T-1 maps were validated in phantom experiments. In humans, the T, values obtained at 7 T were 1.15 +/- 0.06 s for white matter (WM) and 1.92 +/- 0.16 s for grey matter (GM), in good agreement with literature values obtained at lower spatial resolution. At 3 T, where whole-brain acquisitions with 1 mm isotropic voxels were acquired in 8 min the T-1 values obtained (0.81 +/- 0.03 S for WM and 1.35 +/- 0.05 for GM) were once again found to be in very good agreement with values in the literature. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Introduction Lesion detection in multiple sclerosis (MS) is an essential part of its clinical diagnosis. In addition, radiological characterisation of MS lesions is an important research field that aims at distinguishing different MS types, monitoring drug response and prognosis. To date, various MR protocols have been proposed to obtain optimal lesion contrast for early and comprehensive diagnosis of the MS disease. In this study, we compare the sensitivity of five different MR contrasts for lesion detection: (i) the DIR sequence (Double Inversion Recovery, [4]), (ii) the Dark-fluid SPACE acquisition schemes, a 3D variant of a 2D FLAIR sequence [1], (iii) the MP2RAGE [2], an MP-RAGE variant that provides homogeneous T1 contrast and quantitative T1-values, and the sequences currently used for clinical MS diagnosis (2D FLAIR, MP-RAGE). Furthermore, we investigate the T1 relaxation times of cortical and sub-cortical regions in the brain hemispheres and the cerebellum at 3T. Methods 10 early-stage female MS patients (age: 31.64.7y; disease duration: 3.81.9y; disability score, EDSS: 1.80.4) and 10 healthy controls (age and gender-matched: 31.25.8y) were included in the study after obtaining informed written consent according to the local ethic protocol. All experiments were performed at 3T (Magnetom Trio a Tim System, Siemens, Germany) using a 32-channel head coil [5]. The imaging protocol included the following sequences, (all except for axial FLAIR 2D with 1x1x1.2 mm3 voxel and 256x256x160 matrix): DIR (TI1/TI2/TR XX/3652/10000 ms, iPAT=2, TA 12:02 min), MP-RAGE (TI/TR 900/2300 ms, iPAT=3, TA 3:47 min); MP2RAGE (TI1/TI2/TR 700/2500/5000 ms, iPAT=3, TA 8:22 min, cf. [2]); 3D FLAIR SPACE (only for patient 4-6, TI/TR 1800/5000 ms, iPAT=2, TA=5;52 min, cf. [1]); Axial FLAIR (0.9x0.9x2.5 mm3, 256x256x44 matrix, TI/TR 2500/9000 ms, iPAT=2, TA 4:05 min). Lesions were identified by two experienced neurologist and radiologist, manually contoured and assigned to regional locations (s. table 1). Regional lesion masks (RLM) from each contrast were compared for number and volumes of lesions. In addition, RLM were merged in a single "master" mask, which represented the sum of the lesions of all contrasts. T1 values were derived for each location from this mask for patients 5-10 (3D FLAIR contrast was missing for patient 1-4). Results & Discussion The DIR sequence appears the most sensitive for total lesions count, followed by the MP2RAGE (table 1). The 3D FLAIR SPACE sequence turns out to be more sensitive than the 2D FLAIR, presumably due to reduced partial volume effects. Looking for sub-cortical hemispheric lesions, the DIR contrast appears to be equally sensitive to the MP2RAGE and SPACE, but most sensitive for cerebellar MS plaques. The DIR sequence is also the one that reveals cortical hemispheric lesions best. T1 relaxation times at 3T in the WM and GM of the hemispheres and the cerebellum, as obtained with the MP2RAGE sequence, are shown in table 2. Extending previous studies, we confirm overall longer T1-values in lesion tissue and higher standard deviations compared to the non-lesion tissue and control tissue in healthy controls. We hypothesize a biological (different degree of axonal loss and demyelination) rather than technical origin. Conclusion In this study, we applied 5 MR contrasts including two novel sequences to investigate the contrast of highest sensitivity for early MS diagnosis. In addition, we characterized for the first time the T1 relaxation time in cortical and sub-cortical regions of the hemispheres and the cerebellum. Results are in agreement with previous publications and meaningful biological interpretation of the data.
Resumo:
BACKGROUND: A growing number of patients with chronic hepatitis B is being treated for extended periods with nucleoside and/or nucleotide analogs. In this context, antiviral resistance represents an increasingly common and complex issue. METHODS: Mutations in the hepatitis B virus (HBV) reverse transcriptase (rt) gene and viral genotypes were determined by direct sequencing of PCR products and alignment with reference sequences deposited in GenBank. RESULTS: Plasma samples from 60 patients with chronic hepatitis B were analyzed since March 2009. The predominant mutation pattern identified in patients with virological breakthrough was rtM204V/I ± different compensatory mutations, conferring resistance to L-nucleosides (lamivudine, telbivudine, emtricitabine) and predisposing to entecavir resistance (n = 18). Complex mutation patterns with a potential for multidrug resistance were identified in 2 patients. Selection of a fully entecavir resistant strain was observed in a patient exposed to lamivudine alone. Novel mutations were identified in 1 patient. Wild-type HBV was identified in 9 patients with suspected virological breakthrough, raising concerns about treatment adherence. No preexisting resistance mutations were identified in treatment-naïve patients (n = 13). Viral genome amplification and sequencing failed in 16 patients, of which only 2 had a documented HBV DNA > 1000 IU/ml. HBV genotypes were D in 28, A in 6, B in 4, C in 3 and E in 3 patients. Results will be updated in August 2010 and therapeutic implications discussed. CONCLUSIONS: With expanding treatment options and a growing number of patients exposed to nucleoside and/or nucleotide analogs, sequence-based HBV antiviral resistance testing is expected to become a cornerstone in the management of chronic hepatitis B.
Resumo:
P-selectin glycoprotein ligand-1 (PSGL-1) mediates the capture (tethering) of free-flowing leukocytes and subsequent rolling on selectins. PSGL-1 interactions with endothelial selectins activate Src kinases and spleen tyrosine kinase (Syk), leading to α(L)β(2) integrin-dependent leukocyte slow rolling, which promotes leukocyte recruitment into tissues. In addition, but through a distinct pathway, PSGL-1 engagement activates ERK. Because ezrin, radixin and moesin proteins (ERMs) link PSGL-1 to actin cytoskeleton and because they serve as adaptor molecules between PSGL-1 and Syk, we examined the role of PSGL-1 ERM-binding sequence (EBS) on cell capture, rolling, and signaling through Syk and MAPK pathways. We carried out mutational analysis and observed that deletion of EBS severely reduced 32D leukocyte tethering and rolling on L-, P-, and E-selectin and slightly increased rolling velocity. Alanine substitution of Arg-337 and Lys-338 showed that these residues play a key role in supporting leukocyte tethering and rolling on selectins. Importantly, EBS deletion or Arg-337 and Lys-338 mutations abrogated PSGL-1-induced ERK activation, whereas they did not prevent Syk phosphorylation or E-selectin-induced leukocyte slow rolling. These studies demonstrate that PSGL-1 EBS plays a critical role in recruiting leukocytes on selectins and in activating the MAPK pathway, whereas it is dispensable to phosphorylate Syk and to lead to α(L)β(2)-dependent leukocyte slow rolling.
Resumo:
Axial deflection of DNA molecules in solution results from thermal motion and intrinsic curvature related to the DNA sequence. In order to measure directly the contribution of thermal motion we constructed intrinsically straight DNA molecules and measured their persistence length by cryo-electron microscopy. The persistence length of such intrinsically straight DNA molecules suspended in thin layers of cryo-vitrified solutions is about 80 nm. In order to test our experimental approach, we measured the apparent persistence length of DNA molecules with natural "random" sequences. The result of about 45 nm is consistent with the generally accepted value of the apparent persistence length of natural DNA sequences. By comparing the apparent persistence length to intrinsically straight DNA with that of natural DNA, it is possible to determine both the dynamic and the static contributions to the apparent persistence length.
Resumo:
The CD3ε cytoplasmic tail contains a conserved proline-rich sequence (PRS) that influences TCR-CD3 expression and signaling. Although the PRS can bind the SH3.1 domain of the cytosolic adapter Nck, whether the PRS is constitutively available for Nck binding or instead represents a cryptic motif that is exposed via conformational change upon TCR-CD3 engagement (CD3Δc) is currently unresolved. Furthermore, the extent to which a cis-acting CD3ε basic amino acid-rich stretch (BRS), with its unique phosphoinositide-binding capability, might impact PRS accessibility is not clear. In this study, we found that freshly harvested primary thymocytes expressed low to moderate basal levels of Nck-accessible PRS ("open-CD3"), although most TCR-CD3 complexes were inaccessible to Nck ("closed-CD3"). Ag presentation in vivo induced open-CD3, accounting for half of the basal level found in thymocytes from MHC(+) mice. Additional stimulation with either anti-CD3 Abs or peptide-MHC ligands further elevated open-CD3 above basal levels, consistent with a model wherein antigenic engagement induces maximum PRS exposure. We also found that the open-CD3 conformation induced by APCs outlasted the time of ligand occupancy, marking receptors that had been engaged. Finally, CD3ε BRS-phosphoinositide interactions played no role in either adoption of the initial closed-CD3 conformation or induction of open-CD3 by Ab stimulation. Thus, a basal level of open-CD3 is succeeded by a higher, induced level upon TCR-CD3 engagement, involving CD3Δc and prolonged accessibility of the CD3ε PRS to Nck.
Resumo:
The Phytomonas spp. are trypanosomatid parasites of plants. A polar glycolipid fraction of a Phytomonas sp., isolated from the plant Euphorbia characias and grown in culture, was fractionated into four major glycolipid species (Phy 1-4). The glycolipids were analysed by chemical and enzymic modifications, composition and methylation analyses, electrospray mass spectrometry and microsequencing after HNO2 deamination and NaB3H4 reduction. The water-soluble headgroup of the Phy2 glycolipid was also analysed by 1H NMR. All four glycolipids were shown to be glycoinositol-phospholipids (GIPLs) with phosphatidylinositol (PI) moieties containing the fully saturated alkylacylglycerol lipids 1-O-hexadecyl-2-O-palmitoylglycerol and 1-O-hexadecyl-2-O-stearoylglycerol. The structures of the Phy 1-4 GIPLs are: Man alpha 1-2Man alpha 1-6Man alpha 1-4GlcN alpha 1-6PI, Glc alpha 1-2(NH2-CH2CH2-HPO4-)Man alpha 1-2Man alpha 1-6Man alpha 1-4GlcN alpha 1-6PI, [formula: see text] Glc alpha 1-2(NH2CH2CH2-HPO4-)Man alpha 1-2Man alpha 1-6Man alpha 1-4(NH2-CH2CH2-HPO4-)GlcN alpha 1-6PI [formula: see text] and Glc alpha 1-2Glc alpha 1-2(NH2CH2-CH2-HPO4-)Man alpha 1-2Man alpha 1-6Man alpha 1-4(NH2CH2CH2-HPO4-)-GlcN alpha 1-6PI. [formula: see text] The Phytomonas GIPLs represent a novel series of structures. This is the first description of the chemical structure of cell-surface molecules of this plant pathogen. The Phytomonas GIPLs are compared with those of other trypanosomatid parasites and are discussed with respect to trypanosomatid phylogenetic relationships.
Resumo:
In Xenopus laevis four estrogen-responsive genes are expressed simultaneously to produce vitellogenin, the precursor of the yolk proteins. One of these four genes, the gene A2, was sequenced completely, as well as cDNAs representing 75% of the coding region of the gene. From this data the exon-intron structure of the gene was established, revealing 35 exons that give a transcript of 5,619 bp without the poly A-tail. This A2 transcript encodes a vitellogenin of 1,807 amino acids, whose structure is discussed with respect to its function. At the nucleic acid as well as at the protein level no extensive homologies with any sequences other than vitellogenin were observed. Comparison of the amino acid sequence of the vitellogenin A2 molecule with biochemical data obtained from the different yolk proteins allowed us to localize the cleavage products on the vitellogenin precursor as follows: NH2 - lipovitellin I - phosvitin (or phosvette II - phosvette I) - lipovitellin II - COOH.
Resumo:
DNA sequence variation has been associated with quantitative changes in molecular phenotypes such as gene expression, but its impact on chromatin states is poorly characterized. To understand the interplay between chromatin and genetic control of gene regulation, we quantified allelic variability in transcription factor binding, histone modifications, and gene expression within humans. We found abundant allelic specificity in chromatin and extensive local, short-range, and long-range allelic coordination among the studied molecular phenotypes. We observed genetic influence on most of these phenotypes, with histone modifications exhibiting strong context-dependent behavior. Our results implicate transcription factors as primary mediators of sequence-specific regulation of gene expression programs, with histone modifications frequently reflecting the primary regulatory event.
Resumo:
Background and aims Recent studies have adopted a broad definition of Sapindaceae that includes taxa traditionally placed in Aceraceae and Hippocastanaceae, achieving monophyly but yielding a family difficult to characterize and for which no obvious morphological synapomorphy exists. This expanded circumscription was necessitated by the finding that the monotypic, temperate Asian genus Xanthoceras, historically placed in Sapindaceae tribe Harpullieae, is basal within the group. Here we seek to clarify the relationships of Xanthoceras based on phylogenetic analyses using a dataset encompassing nearly 3/4 of sapindaceous genera, comparing the results with information from morphology and biogeography, in particular with respect to the other taxa placed in Harpullieae. We then re-examine the appropriateness of maintaining the current broad, morphologically heterogeneous definition of Sapindaceae and explore the advantages of an alternative family circumscription. Methods Using 243 samples representing 104 of the 142 currently recognized genera of Sapindaceae s. lat. (including all in Harpullieae), sequence data were analyzed for nuclear (ITS) and plastid (matK, rpoB, trnD-trnT, trnK-matK, trnL-trnF and trnS-trnG) markers, adopting the methodology of a recent family-wide study, performing single-gene and total evidence analyses based on maximum likelihood (ML) and maximum parsimony (MP) criteria, and applying heuristic searches developed for large datasets, viz, a new strategy implemented in RAxML (for ML) and the parsimony ratchet (for MP). Bootstrap analyses were performed for each method to test for congruence between markers. Key results Our findings support earlier suggestions that Harpullieae are polyphyletic: Xanthoceras is confirmed as sister to all other sampled taxa of Sapindaceae s. lat.; the remaining members belong to three other clades within Sapindaceae s. lat., two of which correspond respectively to the groups traditionally treated as Aceraceae and Hippocastanaceae, together forming a clade sister to the largely tropical Sapindaceae s. str., which is monophyletic and morphologically coherent provided Xanthoceras is excluded. Conclusion To overcome the difficulties of a broadly circumscribed Sapindaceae, we resurrect the historically recognized temperate families Aceraceae and Hippocastanaceae, and describe a new family, Xanthoceraceae, thus adopting a monophyletic and easily characterized circumscription of Sapindaceae nearly identical to that used for over a century.