29 resultados para symbionts
Resumo:
The driving force behind arbuscular mycorrhizal (AM) interactions is an exchange of nutrients between fungus and plant. Glomeromycotan fungi are obligate symbionts and rely on the carbon provided by their plant hosts to complete their life cycle. In return, the fungus provides nutritional benefits to the plant, notably by delivering minerals. The majority of the nutrient exchange is thought to occur in root cortical cells containing the highly-branched fungal arbuscules. In this chapter, we describe the molecular components of the arbusculated cell and the proteins involved in the transfer of nutrients between fungus and plants. We consider, in detail, the passage of phosphorous and nitrogen from the soil to the arbusculated cell and the concomitant delivery of carbon to the fungal symbiont. In natural conditions, the exchange of nutrients does not need to be completely equitable and selective pressure may act on both partners to push the balance in their favour. In cultivated plants, the artificial environment may further distort the balance. We discuss how a better understanding of the molecular regulation of nutrient transfer benefits attempts to optimise AM associations for agriculture use.
Resumo:
Abstract Arbuscular Mycorhizal Fungi (AMF) are important plant symbionts that can improve floristic diversity and ecosystem productivity. These important fungi are obligate biotrophs and form symbioses with roots of the majority of plant species, improving plant nutrient acquisition in exchange of photosynthates. AM fungi are successful both ecologically as they occupy a very large spectrum of environments as well as host range and evolutionarily, as this symbiosis is over 400 million years old. These fungi grow and reproduce clonally by hyphae and multinucleate spores. AMF are coenocytic and recent work has shown that they harbor genetically different nuclei and that AMF populations are genetically diverse. How AMF species diversity is maintained has been addressed theoretically and experimentally at the community level. Much less attention has been drawn to understand how genetic diversity is maintained within populations although closely related individuals are more likely to compete for the same resources and occupy similar niches. How infra-individual genetic diversity is shaped and maintained has received even less attention. In Chapter 2, we show that individuals from a field population may differ in their symbiotic efficiency under reduced phosphate availability: We show there is genetic variation in an AMF field population for fitness-related growth traits in response to different phosphate availability acid host species. Furthermore, AFLP fingerprints of the same individuals growing in contrasting environments diverged suggesting that the composition in nuclei of AMF is dynamical and affected by environmental factors. Thus environmental heterogeneity is likely to play an important role for the maintenance of genetic diversity at the population level. In Chapter 3 we show that single spores do not inherit necessarily the same genetic material. We have found genetic divergences using two different types of molecular marker, as well as phenotypic divergences among single spore lines. Our results stress the importance of considering these organisms as a multilevel hierarchical system and of better knowing their life cycle. They have important consequences for the understanding of AMF genetics, ecology and the development of commercial AMF inocculum. Résumé Les champignons endomycorhiziens arbusculaires (CEA) sont d'importants symbiontes pour les plantes, car ils augmentent la diversité et la productivité des écosystèmes. Ces importants symbiontes sont des biotrophes obligatoires et forment une symbiose avec la plupart des plantes terrestres. Ils améliorent l'acquisition de substances nutritives de leurs hôtes en échange de sucres obtenus par photosynthèse. Ces champignons ont un grand succès écologique, ils colonisent une grande rangée d'environnements ainsi que d'hôtes. Ils ont aussi un succès évolutif certain de part le fait que cette symbiose existe depuis plus de 400 millions d'années. Les CEA sont asexués et croissent clonalement en formant des hyphes et des spores multinuclées. Les CEA sont des coenocytes et des travaux de recherche récents ont montré qu'ils possèdent des noyaux génétiquement différents. D'autres travaux ont aussi révélé que les populations de CEA sont génétiquement diversifiées. Comment la diversité des CEA est maintenue a seulement été adressée par des études théoriques et expérimentalement au niveau des communautés. Très peu d'attention a été portée sur le maintien de la diversité génétique infra et inter populationnelle, or ce sont les individus les plus proches génétiquement qui vont entrer en compétition pour des ressources et niches similaires. La formation et le maintien de la diversité intra-individu des CEA a reçu très peu d'attention. Dans le chapitre 2, nous montrons que des individus CEA d'un même champ différent dans leur efficacité symbiotique lorsque la concentration en phosphoré est réduite. Nous montrons qu'il existe de la variance génétique dans une population de CEA provenant d'un même champ en réponse à différentes concentrations de phosphore, ainsi qu'en réponse à différentes espèces d'hôtes, et ceci pour des traits de croissance vraisemblablement liés au succès reproducteur. De plus grâce à des AFLP nous avons pu montrer que le génome de ces individus subissent des changements lorsqu'ils croissent dans des environnements contrastés. Ceci suggère que les noyaux génétiquement différents des CEA sont des entités dynamiques. Il est fort probable que l'hétérogénéité environnementale joue un rôle dans le maintien de la diversité génétique des populations de CEA. Dans le chapitre 3, nous montrons que toutes les spores d'un même mycélium parental de CEA ne reçoivent pas exactement le même contenu génétique. Nous avons mis en évidence des divergences entre des Lignées monosporales en utilisant deux types de marqueur moléculaires, ainsi que des différences phénotypiques. Nos résutats soulignent l'importance de considézer ces organismes comme dés systëmes hiérarchiques mufti-niveaux, ainsi que de mieux connaître leur cycle de vie. Nos résultats ont d'importantes conséquences pour la compréhension du système génétique des CEA, ainsi que de leur évolution, leur écológie, mais également des conséquences pour la production d' inoccultim commercial.
Resumo:
P>1. Root herbivores and pathogens interfere with basic below-ground plant function, and can thereby affect plant fitness and spatial and temporal patterns in natural plant communities. However, there has been little development of concepts and theories on below-ground plant defence, a deficit that is in contrast to the abundance of theorizing for above-ground plant parts.2. A review of the past 10 years of research on below-ground plant-herbivore interactions has revealed that, similar to above-ground tissues, root defences can be expressed constitutively or induced upon herbivore attack, and can be classified into direct and indirect traits, tolerance, and escape. Indeed, it has been shown that roots tolerate herbivory by outgrowing or re-growing lost tissues, or resist it by producing secondary metabolites that are toxic to herbivores or attract natural enemies of herbivores.3. We propose that, similar to above-ground plant-herbivore theories, the partition of abiotic and biotic factors over ecological succession can serve as the basis for predicting investment in defence strategies below-ground.4. Investigation of herbivore pressure and root responses along primary and secondary successional gradients suggests that: (i) roots are often fast growing, thinner and softer in early compared to later succession. (ii) Insect and nematode herbivore pressure increases until mid-succession and later decreases. (iii) Mycorrhizal abundance increases with succession, and the composition of fungal species changes through succession, often shifting from arbuscular mycorrhizae to ecto-mycorrhizae.5. Based on these findings, and on classical (above-ground) plant defence theory, we suggest the following set of testable hypotheses for below-ground plant defence: (i) During succession, early plants invest most of their resources in growth and less in defences (associated with a general lack of herbivores and pathogens, and with limited availability of resources in the system), therefore relying more on re-growth (tolerance) strategies. (ii) During mid-succession, a buildup of herbivore pressure facilitates replacement by plant species that exhibit greater direct and indirect defence strategies. (iii) Constitutive and inducible levels of defences may trade-off, and early successional plants should rely more on induction of defences after herbivore attack, whereas late successional plants will increasingly rely on constitutively produced levels of physical and chemical defence. (iv) Successional changes in microbial associations have consequences for root defence by improving plant nutrition and defence expression as well as directly competing for root space; however, toxic or impenetrable root defences may also limit association with root symbionts, and so may constrain the expression of root defence.
Resumo:
Arbuscular mycorrhizal fungi (AMF) are obligate symbionts with most terrestrial plants. They improve plant nutrition, particularly phosphate acquisition, and thus are able to improve plant growth. In exchange, the fungi obtain photosynthetically fixed carbon. AMF are coenocytic, meaning that many nuclei coexist in a common cytoplasm. Genetic exchange recently has been demonstrated in the AMF Glomus intraradices, allowing nuclei of different Glomus intraradices strains to mix. Such genetic exchange was shown previously to have negative effects on plant growth and to alter fungal colonization. However, no attempt was made to detect whether genetic exchange in AMF can alter plant gene expression and if this effect was time dependent. Here, we show that genetic exchange in AMF also can be beneficial for rice growth, and that symbiosis-specific gene transcription is altered by genetic exchange. Moreover, our results show that genetic exchange can change the dynamics of the colonization of the fungus in the plant. Our results demonstrate that the simple manipulation of the genetics of AMF can have important consequences for their symbiotic effects on plants such as rice, which is considered the most important crop in the world. Exploiting natural AMF genetic variation by generating novel AMF genotypes through genetic exchange is a potentially useful tool in the development of AMF inocula that are more beneficial for crop growth.
Resumo:
SUMMARY : The arbuscular mycorrhizal (AM) symbiosis is an evolutionarily ancient association between most land plants and Glomeromycotan fungi that is based on the mutual exchange of nutrients between the two partners. Its structural and physiological establishment is a multi-step process involving a tightly regulated signal exchange leading to intracellular colonization of roots by the fungi. Most research on the molecular biology and genetics of symbiosis development has been performed in dicotyledonous model legumes. In these, a plant signaling pathway, the common SYM pathway, has been found to be required for accommodation of both root symbionts rhizobia and AM fungi. Rice, a monocotyledon model and the world's most important staple crop also forms AM symbioses, has been largely ignored for studies of the AM symbiosis. Therefore in this PhD work functional conservation of the common SYM pathway in rice was addressed and demonstrated. Mycorrhiza-specific marker genes were established that are expressed at different stages of AM development and therefore represent readouts for various AM-specific signaling events. These tools were successfully used to obtain evidence for a yet unknown signaling network comprising common SYM-dependent and -independent events. In legumes AM colonization induces common SYM signaling dependent changes in root system architecture. It was demonstrated that also in rice, root system architecture changes in response to AM colonization but these alterations occur independently of common SYM signaling. The rice root system is complex and contains three different root types. It was shown that root type identity influences the quantity of AM colonization, indicating root type specific symbiotic properties. Interestingly, the root types differed in their transcriptional responses to AM colonization and the less colonized root type responded more dramatically than the more strongly colonized root type. Finally, in an independent project a novel mutant, inhospitable (iho), was discovered. It is perturbed at the most early step of AM colonization, namely differentiation of the AM fungal hyphae into a hyphopodium at the root surface. As plant factors required for this early step are not known, identification of the IHO gene will greatly contribute to the advance of mycorrhiza RÉSUMÉ : La symbiose mycorhizienne arbusculaire (AM) est une association évolutionnairement ancienne entre la majorité des plantes terrestres et les champignons du type Glomeromycota, basée sur l'échange mutuel d'éléments nutritifs entre les deux partenaires. Son établissement structural et physiologique est un processus en plusieurs étapes, impliquant des échanges de signaux étroitement contrôlés, aboutissant à la colonisation intracellulaire des racines par le champignon. La plupart des recherches sur la biologie moléculaire et la génétique du développement de la symbiose ont été effectuées sur des légumineuses dicotylédones modèles. Dans ces dernières, une voie de signalisation, la voie SYM, s'est avérée nécessaire pour permettre la mise en place de la symbiose mycorhizienne. Chez les plantes monocotylédones, comme le riz, une des céréales les plus importantes, nourrissant la moitié de la population mondiale, peu de recherches ont été effectuées sur les bases de la cette symbiose. Dans ce travail de thèse, la conservation fonctionnelle de la voie commune SYM chez le riz a été étudiée et démontrée. De plus, des gènes marqueurs spécifiques des différentes étapes du développement de l'AM ont été identifiés, permettant ainsi d'avoir des traceurs de la colonisation. Ces outils ont été utilisés avec succès pour démontrer l'existence d'un nouveau réseau de signalisation, comprenant des éléments SYM dépendant et indépendant. Chez les légumineuses, la colonisation par les AM induit des changements dans l'architecture du système racinaire, via la signalisation SYM dépendantes. Cependant chez le riz, il a été démontré que l'architecture de système racinaire changeait suite à la colonisation de l'AM, mais ceux, de façon SYM indépendante. Le système racinaire du riz est complexe et contient trois types différents de racines. Il a été démontré que le type de racine pouvait influencer l'efficacité de la colonisation par l'AM, indiquant que les racines ont des propriétés symbiotiques spécifiques différentes. De façon surprenante, les divers types de racines répondent de différemment suite à colonisation par l'AM avec des changements de la expression des gènes. Le type de racine le moins colonisé, répondant le plus fortement a la colonisation, et inversement. En parallèle, dans un projet indépendant, un nouveau mutant, inhospitable (iho), a été identifié. Ce mutant est perturbé lors de l'étape la plus précoce de la colonisation par l'AM, à savoir la différentiation des hyphes fongiques de l'AM en hyphopodium, à la surface des racines. Les facteurs d'origine végétale requis pour cette étape étant encore inconnus, l'identification du gène IHO contribuera considérablement a accroître nos connaissance sur les bases de la mise en place de cette symbiose.
Resumo:
The distribution of plants along environmental gradients is constrained by abiotic and biotic factors. Cumulative evidence attests of the impact of biotic factors on plant distributions, but only few studies discuss the role of belowground communities. Soil fungi, in particular, are thought to play an important role in how plant species assemble locally into communities. We first review existing evidence, and then test the effect of the number of soil fungal operational taxonomic units (OTUs) on plant species distributions using a recently collected dataset of plant and metagenomic information on soil fungi in the Western Swiss Alps. Using species distribution models (SDMs), we investigated whether the distribution of individual plant species is correlated to the number of OTUs of two important soil fungal classes known to interact with plants: the Glomeromycetes, that are obligatory symbionts of plants, and the Agaricomycetes, that may be facultative plant symbionts, pathogens, or wood decayers. We show that including the fungal richness information in the models of plant species distributions improves predictive accuracy. Number of fungal OTUs is especially correlated to the distribution of high elevation plant species. We suggest that high elevation soil show greater variation in fungal assemblages that may in turn impact plant turnover among communities. We finally discuss how to move beyond correlative analyses, through the design of field experiments manipulating plant and fungal communities along environmental gradients.
Resumo:
* Arbuscular mycorrhizal fungi (AMF) are plant symbionts that improve floristic diversity and ecosystem productivity. Many AMF species are generalists with wide host ranges. Arbuscular mycorrhizal fungi individuals are heterokaryotic, and AMF populations are genetically diverse. Populations of AMF harbor two levels of genetic diversity on which selection can act, namely among individuals and within individuals. Whether environmental factors alter genetic diversity within populations is still unknown. * Here, we measured genetic changes and changes in fitness-related traits of genetically distinct AMF individuals from one field, grown with different concentrations of available phosphate or different host species. * We found significant genotype-by-environment interactions for AMF fitness traits in response to these treatments. Host identity had a strong effect on the fitness of different AMF, unearthing a specificity of response within Glomus intraradices. Arbuscular mycorrhizal fungi individuals grown in novel environments consistently showed a reduced presence of polymorphic genetic markers, providing some evidence for host or phosphate-induced genetic change in AMF. * Given that AMF individuals can form extensive hyphal networks colonizing different hosts simultaneously, contrasting habitats or soil properties may lead to evolution in the population. Local selection may alter the structure of AMF populations and maintain genetic diversity, potentially even within the hyphal network of one fungus.
Resumo:
The establishment of arbuscular mycorrhizal (AM) symbioses, formed by most flowering plants in association with glomeromycotan fungi, and the root-nodule (RN) symbiosis, formed by legume plants and rhizobial bacteria, requires an ongoing molecular dialogue that underpins the reprogramming of root cells for compatibility. In both endosymbioses, there are distinct phases to the interaction, including a presymbiotic anticipation phase and, subsequently, an intraradical accommodation of the microsymbiont. Maintenance of the endosymbiosis then depends on reciprocal nutrient exchange with the microsymbiont-obtaining plant photosynthates in exchange for mineral nutrients: enhanced phosphate and nitrogen uptake from AM fungi and fixed nitrogen from rhizobia. Despite the taxonomically distinct groups of symbionts, commonalities are observed in the signaling components and the modulation of host cell responses in both AM and RN symbioses, reflecting common mechanisms for plant cell reprogramming during endosymbiosis.
Resumo:
Background: Arbuscular mycorrhizal fungi (AMF) are important symbionts of most plant species, promoting plant diversity and productivity. This symbiosis is thought to have contributed to the early colonisation of land by plants. Morphological stasis over 400 million years and the lack of an observed sexual stage in any member of the phylum Glomeromycota led to the controversial suggestion of AMF being ancients asexuals. Evidence for recombination in AMF is contradictory. Results: We addressed the question of recombination in the AMF Glomus intraradices by sequencing 11 polymorphic nuclear loci in 40 morphologically identical isolates from one field. Phylogenetic relationships among genotypes showed a reticulate network pattern providing a rationale to test for recombination. Five statistical tests predicted multiple recombinant regions in the genome of a core set of isolates. In contrast, five clonal lineages had fixed a large number of differences. Conclusion: Our data show that AMF from one field have undergone recombination but that clonal lineages coexist. This finding has important consequences for understanding AMF evolution, co-evolution of AMF and plants and highlights the potential for commercially introduced AMF inoculum recombining with existing local populations. Finally, our results reconcile seemingly contradictory studies on whether AMF are clonal or form recombining populations.
Resumo:
Arbuscular mycorrhizal fungi (AMF) are among the most abundant symbionts of plants, improving plant productivity and diversity. They are thought to mostly grow vegetatively, a trait assumed to limit adaptability. However, AMF can also harbor genetically different nuclei (nucleotypes). It has been shown that one AMF can produce genotypically novel offspring with proportions of different nucleotypes. We hypothesized that (1) AMF respond rapidly to a change of environment (plant host) through changes in the frequency of nucleotypes; (2) genotypically novel offspring exhibit different genetic responses to environmental change than the parent; and (3) genotypically novel offspring exhibit a wide range of phenotypic plasticity to a change of environment. We subjected AMF parents and offspring to a host shift. We observed rapid and large genotypic changes in all AMF lines that were not random. Genotypic and phenotypic responses were different among offspring and their parents. Even though growing vegetatively, AMF offspring display a broad range of genotypic and phenotypic changes in response to host shift. We conclude that AMF have the ability to rapidly produce variable progeny, increasing their probability to produce offspring with different fitness than their parents and, consequently, their potential adaptability to new environmental conditions. Such genotypic and phenotypic flexibility could be a fast alternative to sexual reproduction and is likely to be a key to the ecological success of AMF.
Resumo:
Les Champignons Endomycorhiziens Arbusculaires (CEA) forment une symbiose racinaire avec environ 80% des espèces connues de plantes vasculaires. Ils occupent une position écologique très importante liée aux bénéfices qu'ils confèrent aux plantes. Des études moléculaires effectuées sur des gènes ribosomaux ont révélé un très grand polymorphisme, tant à l'intérieur des espèces qu'entre celles-ci. Ces champignons étant coenocytiques et multinucléés, l'organisation de cette variabilité génétique intraspécifique pourrait avoir différentes origines. Ce travail se propose d'examiner l'organisation et l'évolution de cette variabilité. Sur la base de fossiles, l'existence des CEA remonte à au moins 450 millions d'années. Cette symbiose peut donc être considérée comme ancienne. Les premières données moléculaires n'indiquant pas de reproduction sexuée, une hypothèse fut élaborée stipulant que les CEA seraient des asexués ancestraux. La première partie de cette thèse (chapitre 2) met en évidence l'existence de recombinaison dans différents CEA mais montre également que celle-ci est insuffisante pour purger les mutations accumulées. La reproduction étant essentiellement asexuée, on peut prédire que les nombreux noyaux ont probablement divergé génétiquement. En collaboration avec M. Hijri nous avons pu vérifier cette hypothèse (chapitre 2). Dans le chapitre 3 j'ai cherché à comprendre si le polymorphisme était également présent dans une population naturelle du CEA Glomus intraradices au niveau intraspécifique, ce qui n'avait encore jamais été examiné. En comparant les empreintes génétiques d'individus obtenus chacun à partir d'une spore mise en culture, j'ai clairement démontré que d'importantes différences génétiques existent entre ceux-ci. Un résultat similaire, portant sur des traits quantitatifs d'individus de la même population, a été trouvé par A. Koch. Les deux études en ensemble montre que le polymorphisme génétique dans cette population est suffisamment grand pour être important au niveau écologique. Dans le chapitre 4, j'ai cherché a examiner le polymorphisme des séquences du gène BiP au sein d'un individu. C'est la première étude qui examine la diversité génétique du génome de CEA avec un autre marqueur que l'ADN ribosomique. J'ai trouvé 31 types de séquences différentes du gène BiP issu d'un isolat de G. intraradices mis en culture à partir d'une seule spore. Cette variation n'était pas restreinte à des zones sélectivement neutres du BiP. Mes résultats montrent qu'il y a un grand nombre de variants non-fonctionnels, proportionnellement au faible nombre de copies attendues par noyau. Ceci va dans le sens d'une partition de l'information génétique entre les noyaux.<br/><br/>Arbuscular mycorrhizal fungi (AMF) are root symbionts with about 80% of all known species of vascular land plants. AMF are ecologically important because of the benefits that they confer to plants. Molecular studies on AMF showed that rDNA sequences were highly variable between species and within species. Because AMF are coenocytic and multinucleate there are several possibilities how this intraspecific genetic variation could be organized. Therefore, the organization and evolution of this variation in AMF were investigated in the present work. Based on fossil records the AMF symbiosis has existed for 450 Million years and is therefore considered ancient. First molecular data indicated no evident sexual reproduction and gave rise to the hypothesis that AMF might be ancient asexuals. The first part of this thesis (Chapter 2) shows evidence for recombination in different AMF but also indicates that it has not been frequent enough to purge accumulated mutations. Given asexual reproduction, it has been predicted that the many nuclei in AMF should diverge leading to genetically different nuclei. This hypothesis has been confirmed by an experiment of M. Hijri and is also included in chapter 2 as the results were published together. In chapter 3 I then investigated whether intraspecific genetic variation also exists in a field population of the AMF Glomus intraradices. Comparing genetic fingerprints of individuals derived from single spores I could clearly show that large genetic differences exist. A similar result, based on quantitative genetic traits, was found for the same population by A. Koch. The two studies taken together show that the genetic variation observed in the population is high enough to be of ecological relevance. Lastly, in chapter 4, I investigated within individual genetic variation among BiP gene sequences. It is the first study that has analyzed genetic diversity in the AMF genome in a region of DNA other than rDNA. I found 31 sequence variants of the BiP gene in one G. intraradices isolate that originated from one spore. Genetic variation was not only restricted to selectively neutral parts of BiP. A high number of predicted non-functional variants compared to a likely low number of copies per nucleus indicated that functional genetic information might even be partitioned among nuclei. The results of this work contribute to our understanding of potential evolutionary strategies of ancient asexuals, they also suggest that genetic differences in a population might be ecologically relevant and they show that this variation even occurs in functional regions of the AMF genome.
Resumo:
The global human population is expected to reach ∼9 billion by 2050. Feeding this many people represents a major challenge requiring global crop yield increases of up to 100%. Microbial symbionts of plants such as arbuscular mycorrhizal fungi (AMF) represent a huge, but unrealized resource for improving yields of globally important crops, especially in the tropics. We argue that the application of AMF in agriculture is too simplistic and ignores basic ecological principals. To achieve this challenge, a community and population ecology approach can contribute greatly. First, ecologists could significantly improve our understanding of the determinants of the survival of introduced AMF, the role of adaptability and intraspecific diversity of AMF and whether inoculation has a direct or indirect effect on plant production. Second, we call for extensive metagenomics as well as population genomics studies that are crucial to assess the environmental impact that introduction of non-local AMF may have on native AMF communities and populations. Finally, we plead for an ecologically sound use of AMF in efforts to increase food security at a global scale in a sustainable manner.
Resumo:
UNLABELLED: Honeybees harbor well-defined bacterial communities in their guts. The major members of these communities appear to benefit the host, but little is known about how they interact with the host and specifically how they interface with the host immune system. In the pylorus, a short region between the midgut and hindgut, honeybees frequently exhibit scab-like structures on the epithelial gut surface. These structures are reminiscent of a melanization response of the insect immune system. Despite the wide distribution of this phenotype in honeybee populations, its cause has remained elusive. Here, we show that the presence of a common member of the bee gut microbiota, the gammaproteobacterium Frischella perrara, correlates with the appearance of the scab phenotype. Bacterial colonization precedes scab formation, and F. perrara specifically localizes to the melanized regions of the host epithelium. Under controlled laboratory conditions, we demonstrate that exposure of microbiota-free bees to F. perrara but not to other bacteria results in scab formation. This shows that F. perrara can become established in a spatially restricted niche in the gut and triggers a morphological change of the epithelial surface, potentially due to a host immune response. As an intermittent colonizer, this bacterium holds promise for addressing questions of community invasion in a simple yet relevant model system. Moreover, our results show that gut symbionts of bees engage in differential host interactions that are likely to affect gut homeostasis. Future studies should focus on how these different gut bacteria impact honeybee health. IMPORTANCE: As pollinators, honeybees are key species for agricultural and natural ecosystems. Their guts harbor simple communities composed of characteristic bacterial species. Because of these features, bees are ideal systems for studying fundamental aspects of gut microbiota-host interactions. However, little is known about how these bacteria interact with their host. Here, we show that a common member of the bee gut microbiota causes the formation of a scab-like structure on the gut epithelium of its host. This phenotype was first described in 1946, but since then it has not been much further characterized, despite being found in bee populations worldwide. The scab phenotype is reminiscent of melanization, a conserved innate immune response of insects. Our results show that high abundance of one member of the bee gut microbiota triggers this specific phenotype, suggesting that the gut microbiota composition can affect the immune status of this key pollinator species.
Resumo:
Aim of the study: Mycorrhizal fungi in Mediterranean forests play a key role in the complex process of recovery after wildfires. A broader understanding of an important pyrophytic species as Pinus pinaster and its fungal symbionts is thus necessary for forest restoration purposes. This study aims to assess the effects of ectomycorrhizal symbiosis on maritime pine seedlings and how fire severity affects fungal colonization ability. Area of study: Central Spain, in a Mediterranean region typically affected by wildfires dominated by Pinus pinaster, a species adapted to fire disturbance. Material and Methods: We studied P. pinaster root apexes from seedlings grown in soils collected one year after fire in undisturbed sites, sites moderately affected by fire and sites highly affected by fire. Natural ectomycorrhization was observed at the whole root system level as well as at two root vertical sections (0-10 cm and 10-20 cm). We also measured several morphometric traits ( tap root length, shoot length, dry biomass of shoots and root/shoot ratio), which were used to test the influence of fire severity and soil chemistry upon them. Main results: Ectomycorrhizal colonization in undisturbed soils for total and separated root vertical sections was higher than in soils that had been affected by fire to some degree. Inversely, seedling vegetative size increased according to fire severity. Research highlights: Fire severity affected soil properties and mycorrhizal colonization one year after occurrence, thus affecting plant development. These findings can contribute to a better knowledge of the factors mediating successful establishment of P. pinaster in Mediterranean forests after wildfires.