47 resultados para southwestern histochemistry
Resumo:
PURPOSE: During pull-through for Hirschsprung's disease (HSCR), the assessment of innervation is mainly based on the presence of ganglion cells when conventional Hematoxylin and Eosin (HE) staining is used. In hypoganglionosis, the evaluation is difficult. We adapted a standardized methodology for the examination of resected bowel after HSCR surgery, using the technique described by Moolenbeek on rodent intestine and later by Meier-Ruge in children. We have analysed the entire innervation of surgically resected bowels and compared the results with the follow up of patients. METHODS: Three longitudinal strips of colon were harvested from the mesenteric, anti-mesenteric and intermediate part in the whole length of resected colon of six patients with HSCR. Each strip was divided into two parts. One of the contiguous strips was assessed with HE and Hematoxylin-Phloxin-Safran, and the other one with acetylcholinesterase (AChE) histochemistry. We analyzed the distribution of ganglion cells and nerve arrangement along the strips with both techniques and compared the results obtained in the three different regions of the bowel. RESULTS: There was no significant difference in the pattern of innervation circumferentially. There was a correlation between a progressive increase of AChE activity and nerve hypertrophy and a decrease of ganglion cells from the proximal to the distal part of the resected colon in the submucosa and the myenteric plexus. Nerve hypertrophy and AChE-positive reaction in the mucosa were found at the resection border in patients who presented postoperative complications. CONCLUSIONS: Simultaneous assessment of nerve cells, nerve fibers and AChE activity is important in the evaluation of the innervation of the bowel segment proximal to the aganglionic zone. The method described is feasible and can be adapted to older children and adults with larger bowels. These results point out the importance of assessing nerve fibers in intraoperative biopsies during pull-through procedures to prevent uncomplete surgical bowel resection.
Resumo:
Detection of fi ngermarks at a crime scene or on related items is of prime interest for forensicinvestigators, mainly for identifi cation purposes. Most of the fi ngermarks are invisible to thenaked eye, however. The application of detection techniques is required to establish visual contrastbetween the secretion residue and the underlying substrate. We give here a review of thefi eld related to the concept of using stains to detect fi ngermarks. A distinction has been madebetween the physically driven classical detection techniques, the chemically driven ones, andthose based on nanostructured materials, an emerging fi eld in forensic science.
Resumo:
Contraction forces developed by cardiomyocytes are transmitted across the plasma membrane through end-to-end connections between the myocytes, called intercalated disks, which enable the coordinated contraction of heart muscle. A component of the intercalated disk, the adherens junction, consists of the cell adhesion molecule, N-cadherin. Embryos lacking N-cadherin die at mid-gestation from cardiovascular abnormalities. We have evaluated the role of N-cadherin in cardiomyogenesis using N-cadherin-null mouse embryonic stem (ES) cells grown as embryoid bodies (EBs) in vitro. Myofibrillogenesis, the spatial orientation of myofibers, and intercellular contacts including desmosomes were normal in N-cadherin-null ES cell-derived cardiomyocytes. The effect of retinoic acid (RA), a stage and dose-dependent cardiogenic factor, was assessed in differentiating ES cells. all-trans (at) RA increased the number of ES cell-derived cardiomyocytes by approximately 3-fold (at 3 x 10(-9) M) in wt EBs. However, this effect was lost in N-cadherin-null EBs. In the presence of supplemented at-RA, the emergence of spontaneously beating cardiomyocytes appeared to be delayed and slightly less efficient in N-cadherin-null compared with wt and heterozygous EBs (frequencies of EBs with beating activity at 5 days: 54+/-18% vs. 96+/-0.5%, and 93+/-7%, respectively; peak frequencies of EBs with beating activity: 83+/-8% vs. 96+/-0.5% and 100%, respectively). In conclusion, cardiomyoyctes differentiating from N-cadherin-null ES cells in vitro show normal myofibrillogenesis and intercellular contacts, but impaired responses to early cardiogenic effects mediated by at-RA. These results suggest that N-cadherin may be essential for RA-induced cardiomyogenesis in mouse ES cells in vitro.
Resumo:
OBJECTIVE: To evaluate the contributions of autophagic, necrotic, and apoptotic cell death mechanisms after neonatal cerebral ischemia and hence define the most appropriate neuroprotective approach for postischemic therapy. METHODS: Rats were exposed to transient focal cerebral ischemia on postnatal day 12. Some rats were treated by postischemic administration of pan-caspase or autophagy inhibitors. The ischemic brain tissue was studied histologically, biochemically, and ultrastructurally for autophagic, apoptotic, and necrotic markers. RESULTS: Lysosomal and autophagic activities were increased in neurons in the ischemic area from 6 to 24 hours postinjury, as shown by immunohistochemistry against lysosomal-associated membrane protein 1 and cathepsin D, by acid phosphatase histochemistry, by increased expression of autophagosome-specific LC3-II and by punctate LC3 staining. Electron microscopy confirmed the presence of large autolysosomes and putative autophagosomes in neurons. The increases in lysosomal activity and autophagosome formation together demonstrate increased autophagy, which occurred mainly in the border of the lesion, suggesting its involvement in delayed cell death. We also provide evidence for necrosis near the center of the lesion and apoptotic-like cell death in its border, but in nonautophagic cells. Postischemic intracerebroventricular injections of autophagy inhibitor 3-methyladenine strongly reduced the lesion volume (by 46%) even when given >4 hours after the beginning of the ischemia, whereas pan-caspase inhibitors, carbobenzoxy-valyl-alanyl-aspartyl(OMe)-fluoromethylketone and quinoline-val-asp(OMe)-Ch2-O-phenoxy, provided no protection. INTERPRETATION: The prominence of autophagic neuronal death in the ischemic penumbra and the neuroprotective efficacy of postischemic autophagy inhibition indicate that autophagy should be a primary target in the treatment of neonatal cerebral ischemia.
Resumo:
The rat adrenal gland contains ganglion cells able to synthesize nitric oxide (NO). This messenger molecule controls and modulates adrenal secretory activity and blood flow. The present study analyzed the number, size, and distribution of NO-producing adrenal neurons in adulthood and during postnatal development by means of beta-nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry. This method reliably visualizes the enzyme responsible for NO generation. The reactive neurons per adrenal gland were 350-400 in both male and female adult rats. The positive nerve cell bodies were mostly located in the medulla, few being detected within the cortex and the subcapsular region. Dual labeling with anti-microtubule-associated protein 2 antibody, specific for neuronal elements, confirmed this distribution. Anti-microtubule-associated protein 1b antibody identified a subset of NADPH-d-positive neurons, displaying different degrees of maturation according to their position within the adrenal gland. At birth, there were about 220 NADPH-d-labeled neurons per adrenal gland in both sexes. As confirmed by dual immunocytochemical labeling, their great majority was evenly distributed between the cortex and the subcapsular region, the medulla being practically devoid of stained neurons. After birth, the number of adrenal NADPH-d-positive ganglion cells displayed a strong postnatal increase and reached the adult-like distribution after 1-2 months. During the period of increase, there was a transient difference in the numbers of these cells in the two sexes. Thus we present here evidence of plasticity in the number, size, and distribution of NADPH-d-positive adrenal neurons between birth and adulthood; in addition, we describe transient sex-related differences in their number and distribution during the 2nd postnatal week, which are possibly related to the epigenetic action of gonadal hormones during this period.
Resumo:
We characterize divergence times, intraspecific diversity and distributions for recently recognized lineages within the Hyla arborea species group, based on mitochondrial and nuclear sequences from 160 localities spanning its whole distribution. Lineages of H. arborea, H. orientalis, H. molleri have at least Pliocene age, supporting species level divergence. The genetically uniform Iberian H. molleri, although largely isolated by the Pyrenees, is parapatric to H. arborea, with evidence for successful hybridization in a small Aquitanian corridor (southwestern France), where the distribution also overlaps with H. meridionalis. The genetically uniform H. arborea, spread from Crete to Brittany, exhibits molecular signatures of a postglacial range expansion. It meets different mtDNA clades of H. orientalis in NE-Greece, along the Carpathians, and in Poland along the Vistula River (there including hybridization). The East-European H. orientalis is strongly structured genetically. Five geographic mitochondrial clades are recognized, with a molecular signature of postglacial range expansions for the clade that reached the most northern latitudes. Hybridization with H. savignyi is suggested in southwestern Turkey. Thus, cryptic diversity in these Pliocene Hyla lineages covers three extremes: a genetically poor, quasi-Iberian endemic (H. molleri), a more uniform species distributed from the Balkans to Western Europe (H. arborea), and a well-structured Asia Minor-Eastern European species (H. orientalis).
Resumo:
Introduction: Glioblastoma (WHO Grade IV glioma) is the most frequent and most¦malignant primary tumor of the brain. With a mean survival of 15 months despite¦multidisciplinary management combining surgery, chemo- and radiotherapy, the prognosis¦is poor. Different studies measured a down-regulation of Wnt Inhibitory Factor 1 (WIF1)¦expression in a majority of gliobastoma due to genetic and epigenetic regulation. Recently,¦a focus on chromosome 12 identified WIF1 as a potential tumor suppressor gene. In¦previous results, transfected glioblastoma cells with ectopic expression of WIF1 had a¦decreased growth rate and adopted a senescence-like phenotype. In this report, we first¦investigated the effect of WIF1 re-expression in glioblastoma cell lines to see if Wnt¦inhibition by WIF1 can lead to senescence. To look further, we assessed p21 and c-Myc¦expression. p21 has a key role in senescence onset and is directly inhibited by c-Myc,¦itself a target of Wnt-pathway. We thus looked if a variation of expression of these genes is¦triggered by WIF1 activity. Finally, as autophagy is thought to play a role in senescence¦onset, we analyzed the expression of different autophagy genes. We therefore looked for¦an association between autophagy activity and senescent phenotype in WIF1-¦overexpressing cell lines.¦Methods: WIF1-overexpressing clones were selected after transfection of stable¦glioblastoma cell lines. Analysis were made through quantitative Polymerase Chain¦Reaction (qPCR), Fluorescence-activated Cell Sorting (FACS) and histochemistry.¦IGFBP7 and ALDH1A3 have been selected to reflect senescence. ATG5, ATG7 and ULK3¦have been selected to reflect autophagy activity.¦Results: Using FACS analysis, we found a higher percentage of large cells with increased¦granularity amongst WIF1-overexpressing cell lines, which are characteristics of¦senescence. In addition, histochemistry showed a higher percentage of multi-nucleated,¦beta-galactosidase positive cells in the same cell lines. An increased expression of genes¦associated with senescence was found as well. All characteristics were correlated with¦levels of WIF1 expression. We did not find any association between p21 and WIF1¦expression. No correlation between WIF1 and c-Myc expression was noticed either. In one¦of the two cell lines analyzed, the expression of autophagy genes showed some¦correlation with expression of WIF1 and expression of genes associated with senescence.¦Discussion: After investigations and characterizations on multiple levels, we have¦evidence for a senescence phenotype upon WIF1-overexpressing cell lines. This gives a¦role to Wnt pathway in the tumorigenicity of glioblastoma. Further experiments are¦required to investigate how Wnt inhibition leads to senescence. The role of autophagy in¦our senescent cells is here still unclear. Some correlations can be found, letting us think¦that there is indeed some involvement of autophagy. However, it is yet to soon to explain¦this relationship. Further experiments are required again to confirm the preliminary results¦and analyze the variations of autophagy activity within time.
Resumo:
A defect in glucose sensing of the pancreatic beta-cells has been observed in several animal models of type II diabetes and has been correlated with a reduced gene expression of the glucose transporter type 2 (Glut2). In a transgenic mouse model, expression of Glut2 antisense RNA in pancreatic beta-cells has recently been shown to be associated with an impaired glucose-induced insulin secretion and the development of diabetes. To identify factors that may be involved in the specific decrease of Glut2 in the beta-cells of the diabetic animal, an attempt was made to localize the cis-elements and trans-acting factors involved in the control of Glut2 expression in the endocrine pancreas. It was demonstrated by transient transfection studies that only 338 base pairs (bp) of the murine Glut2 proximal promoter are needed for reporter gene expression in pancreatic islet-derived cell lines, whereas no activity was detected in nonpancreatic cells. Three cis-elements, GTI, GTII, and GTIII, have been identified by DNAse I footprinting and gel retardation experiments within these 338 bp. GTI and GTIII bind distinct but ubiquitously expressed trans-acting factors. On the other hand, nuclear proteins specifically expressed in pancreatic cell lines interact with GTII, and their relative abundance correlates with endogenous Glut2 expression. These GTII-binding factors correspond to nuclear proteins of 180 and 90 kilodaltons as defined by Southwestern analysis. The 180-kilodalton factor is present in pancreatic beta-cell lines but not in an alpha-cell line. Mutation of the GTI or GTIII cis-elements decreases transcriptional activity directed by the 338-bp promoter, whereas mutation of GTII increases gene transcription. Thus negative and positive regulatory sequences are identified within the proximal 338 bp of the GLUT2 promoter and may participate in the islet-specific expression of the gene by binding beta-cell specific trans-acting factors.
Resumo:
Recently, we showed that connexin37 (Cx37) protects against early atherosclerotic lesion development by regulating monocyte adhesion. The expression of this gap junction protein is altered in mouse and human atherosclerotic lesions; it is increased in macrophages newly recruited to the lesions and disappears from the endothelium of advanced plaques. To obtain more insight into the molecular role of Cx37 in advanced atherosclerosis, we used micro-array analysis for gene expression profiling in aortas of ApoE(-/-) and Cx37(-/-)ApoE(-/-) mice before and after 18 weeks of cholesterol-rich diet. Out of >15,000 genes, 106 genes were significantly differentially expressed in young mice before diet (P-value of <0.05, fold change of >0.7 or <-0.7, and intensity value >2.2 times background). Ingenuity pathway analysis (IPA) revealed differences in genes involved in cell-to-cell signaling and interaction, cellular compromise and nutritional disease. In addition, we identified 100 genes that were significantly perturbed after the cholesterol-rich diet. Similar to the analysis on 10-week-old mice, IPA revealed differences in genes involved in cell-to-cell signaling and interaction as well as to immuno-inflammatory disease. Furthermore, we found important changes in genes involved in vascular calcification and matrix degradation, some of which were confirmed at protein level by (immuno-)histochemistry. In conclusion, we suggest that Cx37 deficiency alters the global differential gene expression profiles in young mice towards a pro-inflammatory phenotype, which are then further influenced in advanced atherosclerosis. The results provide new insights into the significance of Cx37 in plaque calcification.
Resumo:
OBJECTIVE: Neonatal hypoxic-ischemic encephalopathy (HIE) still carries a high burden by its mortality and long-term neurological morbidity in survivors. Apart from hypothermia, there is no acknowledged therapy for HIE, reflecting the lack of mechanistic understanding of its pathophysiology. (Macro)autophagy, a physiological intracellular process of lysosomal degradation, has been proposed to be excessively activated in excitotoxic conditions such as HIE. The present study examines whether neuronal autophagy in the thalamus of asphyxiated human newborns or P7 rats is enhanced and related to neuronal death processes. METHODS: Neuronal autophagy and cell death were evaluated in the thalamus (frequently injured in severe HIE) of both human newborns who died after severe HIE (n = 5) and P7 hypoxic-ischemic rats (Rice-Vannuci model). Autophagic (LC3, p62), lysosomal (LAMP1, cathepsins), and cell death (TUNEL, caspase-3) markers were studied by immunohistochemistry in human and rat brain sections, and by additional methods in rats (immunoblotting, histochemistry, and electron microscopy). RESULTS: Following severe perinatal asphyxia in both humans and rats, thalamic neurons displayed up to 10-fold (p < 0.001) higher numbers of autophagosomes and lysosomes, implying an enhanced autophagic flux. The highly autophagic neurons presented strong features of apoptosis. These findings were confirmed and elucidated in more detail in rats. INTERPRETATION: These results show for the first time that autophagy is enhanced in severe HIE in dying thalamic neurons of human newborns, as in rats. Experimental neuroprotective strategies targeting autophagy could thus be a promising lead to follow for the development of future therapeutic approaches. Ann Neurol 2014;76:695-711.
Resumo:
Dense granular bodies (DGB) are particular structural constituents observed in cell nuclei of different tissues-liver, pancreas, brown adipose tissue, adrenal cortex-of hibernating dormice. They appear as strongly electron-dense clusters of closely packed granules, with thin fibrils spreading out at their periphery. DGB always occur in the nucleoplasm, sometimes making contact with other nuclear structural constituents typical of the hibernating state, such as coiled bodies, amorphous bodies and nucleoplasmic fibrils. DGB are present only during deep hibernation and rapidly disappear upon arousal from hibernation. Cytochemical and immunocytochemical analyses showed that DGB contain ribonucleoproteins and several nucleoplasmic RNA processing factors, suggesting that DGB can represent accumulation sites of splicing factors which are provided to splicing sites when normal metabolic activity is rapidly restored during arousal.
Resumo:
Using both conventional fluorescence and confocal laser scanning microscopy we have investigated whether or not stabilization of isolated human erythroleukemic nuclei with sodium tetrathionate can maintain in the nuclear matrix the same spatial distribution of three polypeptides (M(r) 160 kDa and 125 kDa, previously shown to be components of the internal nuclear matrix plus the 180-kDa nucleolar isoform of DNA topoisomerase II) as seen in permeabilized cells. The incubation of isolated nuclei in the presence of 2 mM sodium tetrathionate was performed at 0 degrees C or 37 degrees C. The matrix fraction retained 20-40% of nuclear protein, depending on the temperature at which the chemical stabilization was executed. Western blot analysis revealed that the proteins studied were completely retained in the high-salt resistant matrix. Indirect immunofluorescence experiments showed that the distribution of the three antigens in the final matrix closely resembled that detected in permeabilized cells, particularly when the stabilization was performed at 37 degrees C. This conclusion was also strengthened by analysis of cells, isolated nuclei and the nuclear matrix by means of confocal laser scanning microscopy. We conclude that sodium tetrathionate stabilization of isolated nuclei does not alter the spatial distribution of some nuclear matrix proteins.
Resumo:
Late Triassic submarine alkali basalts and hawaiites were collected from two superimposed tectonic slices belonging to the Kara Dere - Sayrun unit of the Middle Antalya nappes, southwestern Turkey. New determinations on conodont faunas allow to date this sequence to the Lower Carnian (Julian). The volcanic rocks show rather homogeneous compositions, with high TiO2 and relatively low MgO and Ni contents which suggest olivine fractionation. Their primitive mantle-normalised multi-elements plots show Nb and Ta enrichments relative to La, Pb negative anomalies and heavy rare earth element and Y depletions typical of intraplate ocean island basalts. These characteristics are consistent with the major and trace element compositions of their primary clinopyroxene phenocrysts, which do not show any feature ascribable to crustal contamination. The studied lavas display a restricted range of epsilon Nd (+4.6 to +5.2) which falls within the range of ocean island basalts. Their initial (Nd-143/Nd-144)i ratios are too low to be explained by a simple mixing line between depleted MORB mantle (DMM) and HIMU components. Their Pb and Nd isotopic compositions plot along a mixing line between HIMU component and an enriched mantle, the composition of which could be the result of the addition of about 5 to 8% of an EM2 component (recycled marine sediments) to DMM. The lack of evidence for any continental crustal component. in their genesis could be consistent with their emplacement in an intra-oceanic setting.
Resumo:
The distribution of three nuclear scaffold proteins (of which one is a component of a particular class of nuclear bodies) has been studied in intact K562 human erythroleukemia cells, isolated nuclei, and nuclear scaffolds. Nuclear scaffolds were obtained by extraction with the ionic detergent lithium diidosalicylate (LIS), using nuclei prepared in the absence of divalent cations (metal-depleted nuclei) and stabilized either by a brief heat exposure (20 min at 37C or 42C) or by Cu++ ions at 0C. Proteins were visualized by in situ immunocytochemistry and confocal microscopy. Only a 160-kD nuclear scaffold protein was unaffected by all the stabilization procedures performed on isolated nuclei. However, LIS extraction and scaffold preparation procedures markedly modified the distribution of the polypeptide seen in intact cells, unless stabilization had been performed by Cu++. In isolated nuclei, only Cu++ treatment preserved the original distribution of the two other antigens (M(r), 125 and 126 kD), whereas in heat-stabilized nuclei we detected dramatic changes. In nuclear scaffolds reacted with antibodies to 125 and 126-kD proteins, the fluorescent pattern was always disarranged regardless of the stabilization procedure. These results, obtained with nuclei prepared in the absence of Mg+2 ions, indicate that heat treatment per se can induce changes in the distribution of nuclear proteins, at variance with previous suggestions. Nevertheless, each of the proteins we have studied behaves in a different way, possibly because of its specific association with the nuclear scaffold.
Resumo:
Cancer cells acquire cell-autonomous capacities to undergo limitless proliferation and survival through the activation of oncogenes and inactivation of tumor suppressor genes. Nevertheless, the formation of a clinically relevant tumor requires support from the surrounding normal stroma, also referred to as the tumor microenvironment. Carcinoma-associated fibroblasts, leukocytes, bone marrow-derived cells, blood and lymphatic vascular endothelial cells present within the tumor microenvironment contribute to tumor progression. Recent evidence indicates that the microenvironment provides essential cues to the maintenance of cancer stem cells/cancer initiating cells and to promote the seeding of cancer cells at metastatic sites. Furthermore, inflammatory cells and immunomodulatory mediators present in the tumor microenvironment polarize host immune response toward specific phenotypes impacting tumor progression. A growing number of studies demonstrate a positive correlation between angiogenesis, carcinoma-associated fibroblasts, and inflammatory infiltrating cells and poor outcome, thereby emphasizing the clinical relevance of the tumor microenvironment to aggressive tumor progression. Thus, the dynamic and reciprocal interactions between tumor cells and cells of the tumor microenvironment orchestrate events critical to tumor evolution toward metastasis, and many cellular and molecular elements of the microenvironment are emerging as attractive targets for therapeutic strategies.