76 resultados para soil core
Resumo:
Regions under tropical rainforest cover, such as central Africa and Brazil are characterised by degradation and dismantling of old ferricrete structures. In southern Cameroon, these processes are relayed by present-day ferruginous accumulation soil facies, situated on the middle and the lower part of hill slopes. These facies become progressively harder towards the surface, containing from bottom to top, mainly kaolinite, kaolinite-goethite and Al-rich goethite-hematite, and are discontinuous to the relictic hematite-dominated ferricrete that exist in the upper part of the hill slope. These features were investigated in terms of geochemical differentiation of trace elements. It appears that, in contrast to the old ferricrete facies, the current ferruginous accumulations are enriched in transitional trace elements (V, Cr, Co, Y, Sc) and Ph, while alkali-earth elements are less differentiated. This recent chemical accumulation is controlled both by intense weathering of the granodiorite bedrock and by mobilisation of elements previously accumulated in the old ferricrete. The observed processes are clearly linked to the present-day humid climate with rising groundwater tables. They slowly replace the old ferricretes formed during Cretaceous time under more seasonal climatic conditions, representing an instructive case of continuos global change. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Abstract Pasquier, Mathieu, Noemi Zurron, Barbara Weith, Pierre Turini, Fabrice Dami, Pierre-Nicolas Carron, and Peter Paal. Deep accidental hypothermia with core temperature below 24°C presenting with vital signs. High Alt Med Biol. 15:58-63, 2014.-Background: According to the Swiss hypothermia clinical staging, patients with stage III are unconscious with preserved vital signs, with core temperature usually between 24° and 28°C. With stage IV, vital signs are absent with core temperature <24°C. Aims: To describe a patient presenting with HT stage III with vital signs but a core temperature of <24°C, and to search for similar patients in the medical literature. Materials and methods: MEDLINE was used to search for cases of deep accidental hypothermia (<24°C) and preserved vital signs. Results: We found 22 cases in addition to our case (n=23). Median age was 44 years (IQR 36; range 4-83) and median core temperature 22°C (IQR 1.7; 17-23.8). Vital signs were often minimal. Seven patients developed ventricular fibrillation (VF). Twenty patients survived with excellent neurological outcome. Conclusions: Vital signs can be present in hypothermic patients with core temperature <24°C. In deeply hypothermic patients, a careful check and prolonged check of vital functions should be made, as vital signs may be minimal. The clinical Swiss staging remains valuable in the prehospital evaluation of hypothermic patients; its correlation with core temperature should be better defined.
Resumo:
Studying patterns of species distributions along elevation gradients is frequently used to identify the primary factors that determine the distribution, diversity and assembly of species. However, despite their crucial role in ecosystem functioning, our understanding of the distribution of below-ground fungi is still limited, calling for more comprehensive studies of fungal biogeography along environmental gradients at various scales (from regional to global). Here, we investigated the richness of taxa of soil fungi and their phylogenetic diversity across a wide range of grassland types along a 2800 m elevation gradient at a large number of sites (213), stratified across a region of the Western Swiss Alps (700 km(2)). We used 454 pyrosequencing to obtain fungal sequences that were clustered into operational taxonomic units (OTUs). The OTU diversity-area relationship revealed uneven distribution of fungal taxa across the study area (i.e. not all taxa are everywhere) and fine-scale spatial clustering. Fungal richness and phylogenetic diversity were found to be higher in lower temperatures and higher moisture conditions. Climatic and soil characteristics as well as plant community composition were related to OTU alpha, beta and phylogenetic diversity, with distinct fungal lineages suggesting distinct ecological tolerances. Soil fungi, thus, show lineage-specific biogeographic patterns, even at a regional scale, and follow environmental determinism, mediated by interactions with plants.
Resumo:
Colloidal transport has been shown to enhance the migration of plutonium in groundwater downstream from contaminated sites, but little is known about the adsorption of ⁹⁰Sr and plutonium onto colloids in the soil solution of natural soils. We sampled soil solutions using suction cups, and separated colloids using ultrafiltration to determine the distribution of ²³⁹Pu and ⁹⁰Sr between the truly dissolved fraction and the colloidal fraction of the solutions of three Alpine soils contaminated only by global fallout from the nuclear weapon tests. Plutonium was essentially found in the colloidal fraction (>80%) and probably associated with organic matter. A significant amount of colloidal ⁹⁰Sr was detected in organic-rich soil solutions. Our results suggest that binding to organic colloids in the soil solutions plays a key role with respect to the mobility of plutonium in natural alpine soils and, to a lesser extent, to the mobility of ⁹⁰Sr.
Resumo:
Natural fluctuations in soil microbial communities are poorly documented because of the inherent difficulty to perform a simultaneous analysis of the relative abundances of multiple populations over a long time period. Yet, it is important to understand the magnitudes of community composition variability as a function of natural influences (e.g., temperature, plant growth, or rainfall) because this forms the reference or baseline against which external disturbances (e.g., anthropogenic emissions) can be judged. Second, definition of baseline fluctuations in complex microbial communities may help to understand at which point the systems become unbalanced and cannot return to their original composition. In this paper, we examined the seasonal fluctuations in the bacterial community of an agricultural soil used for regular plant crop production by using terminal restriction fragment length polymorphism profiling (T-RFLP) of the amplified 16S ribosomal ribonucleic acid (rRNA) gene diversity. Cluster and statistical analysis of T-RFLP data showed that soil bacterial communities fluctuated very little during the seasons (similarity indices between 0.835 and 0.997) with insignificant variations in 16S rRNA gene richness and diversity indices. Despite overall insignificant fluctuations, between 8 and 30% of all terminal restriction fragments changed their relative intensity in a significant manner among consecutive time samples. To determine the magnitude of community variations induced by external factors, soil samples were subjected to either inoculation with a pure bacterial culture, addition of the herbicide mecoprop, or addition of nutrients. All treatments resulted in statistically measurable changes of T-RFLP profiles of the communities. Addition of nutrients or bacteria plus mecoprop resulted in bacteria composition, which did not return to the original profile within 14 days. We propose that at less than 70% similarity in T-RFLP, the bacterial communities risk to drift apart to inherently different states.
Resumo:
Time-lapse geophysical data acquired during transient hydrological experiments are being increasingly employed to estimate subsurface hydraulic properties at the field scale. In particular, crosshole ground-penetrating radar (GPR) data, collected while water infiltrates into the subsurface either by natural or artificial means, have been demonstrated in a number of studies to contain valuable information concerning the hydraulic properties of the unsaturated zone. Previous work in this domain has considered a variety of infiltration conditions and different amounts of time-lapse GPR data in the estimation procedure. However, the particular benefits and drawbacks of these different strategies as well as the impact of a variety of key and common assumptions remain unclear. Using a Bayesian Markov-chain-Monte-Carlo stochastic inversion methodology, we examine in this paper the information content of time-lapse zero-offset-profile (ZOP) GPR traveltime data, collected under three different infiltration conditions, for the estimation of van Genuchten-Mualem (VGM) parameters in a layered subsurface medium. Specifically, we systematically analyze synthetic and field GPR data acquired under natural loading and two rates of forced infiltration, and we consider the value of incorporating different amounts of time-lapse measurements into the estimation procedure. Our results confirm that, for all infiltration scenarios considered, the ZOP GPR traveltime data contain important information about subsurface hydraulic properties as a function of depth, with forced infiltration offering the greatest potential for VGM parameter refinement because of the higher stressing of the hydrological system. Considering greater amounts of time-lapse data in the inversion procedure is also found to help refine VGM parameter estimates. Quite importantly, however, inconsistencies observed in the field results point to the strong possibility that posterior uncertainties are being influenced by model structural errors, which in turn underlines the fundamental importance of a systematic analysis of such errors in future related studies.
Resumo:
The top soil of a 14.5 km(2) region at la Chaux-de-Fonds in the Swiss Jura is exceptionally rich in cadmium. It contains an average of 1.3 mg per kg of soil. The spatial distribution of the metal has no simple pattern that could be explained by atmospheric deposition or agricultural practices. Thin soil contained most of its Cd at the surface; in thicker soil Cd is mainly concentrated between 60 and 80 cm depth. No specific minerals or soil fractions could account for these accumulation, and the vertical distribution of Cd is best explained by leaching from the topsoil and further adsorption within layers of nearly neutral pH. The local Jurassic sedimentary rocks contained too little Cd to account for the Cd concentrations in the soil. Alpine gravels from glacial till were too sparse in soils to explain such a spreading of Cd. Moreover this origin is contradictory with the fact that Cd is concentrated in the sand fraction of soils. The respective distributions of Fe and Cd in soils, and soil fractions, suggested that the spreading of iron nodules accumulated during the siderolithic period (Eocene) was not the main source of Cd. Atmospheric deposition, and spreading of fertiliser or waste from septic tanks seem the only plausible explanation for the Cd concentrations, but at present few factors allow us to differentiate between them.
Resumo:
Data on new predictors of outcome include penumbra core or collaterals.Objective: To test the predictive value of recanalization, collaterals, penumbra and core of ischemia for functional outcome in a large group of patients with MCA occlusion. Method: Consecutive events included prospectively in the Acute Stroke Registry and Analysis of Lausanne from April 2002 to April 2009 with an acute stroke due to proximal MCA occlusion (M1) were considered for analysis. Acute CTA were reviewed to grade the collaterals (dichotomized in poor __50% or good _50% compared to the normal side) and localization of M1 occlusion (proximal or mid-distal). Acute CTP were reviewed and reconstructed to determine penumbra, core and stroke index (penumbra/penumbra_core) of brain ischemia. Good outcome was defined by mRS 0-2 at 3 months.Results: Among 242 events (115 male, mean NIHSS 18.1, SD 5.8, mean age 66, SD 15), 42% were treated with intravenous thrombolysis, and 3% with intraarterial thrombolysis. Collateral status was rated as poor in 53% of events and proximal M1 occlusion was present in 64%. Recanalization determined at 24 hours with CTA was complete in 26% events and partial/absent in 54%.CTP was available for 212 events. Mean penumbra was 88.6 cm3 (median 84.4, SD 53.8), mean core was 54.1 cm3 (median 46.2, SD 45.7) and stroke index was 64% (median 68%, SD 25%). Good outcome was observed in 87 events (36%) and was associated in multivariate logistic regression with thrombolysis (p_0.02, OR_2.5, 95% CI 1.2-5.4), recanalization (p_0.001, OR_4.1, 95% CI 1.9-8.9), lower NIHSS (p_0.001, OR_0.84, 95% CI 0.78-0.91), male gender (p_0.01, OR_2.8, 95% CI 1.3-5.9), mRS prior to stroke (p_0.02, OR_0.5, 95% CI 0.28-0.9) and good collateral status (p_0.005, OR_3, 95% CI 1.4-6.4). Nor penumbra, nor core, nor stroke index were significant in the multivariate model, even if an association was present in the univariate model between good functional outcome and penumbra (p_0.004, OR_1.008, 95% CI 1.003-1.01), core (p_0.001, OR_0.98, 95% CI 0.976-0.99) and strokeindex (p_0.001, OR_16.7, 95% CI 4.6 59.9).Conclusion: MCA recanalization is the best predictor for good functional outcome, followed by collateral status. CTP data did not predict the functional outcome in our large group of M1 occlusion. Author Disclosures: C. Odier: None. P. Michel: Research Grant; Significant; Paion, Lundbeck. Speakers; Modest; Boehringer-Ingelheim. Consultant/Advisory Board; Modest; Boehringer- Ingelheim. Consultant/Advisory Board; Significant; Servier, Lundbeck.
Resumo:
Plants influence the behavior of and modify community composition of soil-dwelling organisms through the exudation of organic molecules. Given the chemical complexity of the soil matrix, soil-dwelling organisms have evolved the ability to detect and respond to these cues for successful foraging. A key question is how specific these responses are and how they may evolve. Here, we review and discuss the ecology and evolution of chemotaxis of soil nematodes. Soil nematodes are a group of diverse functional and taxonomic types, which may reveal a variety of responses. We predicted that nematodes of different feeding guilds use host-specific cues for chemotaxis. However, the examination of a comprehensive nematode phylogeny revealed that distantly related nematodes, and nematodes from different feeding guilds, can exploit the same signals for positive orientation. Carbon dioxide (CO(2)), which is ubiquitous in soil and indicates biological activity, is widely used as such a cue. The use of the same signals by a variety of species and species groups suggests that parts of the chemo-sensory machinery have remained highly conserved during the radiation of nematodes. However, besides CO(2), many other chemical compounds, belonging to different chemical classes, have been shown to induce chemotaxis in nematodes. Plants surrounded by a complex nematode community, including beneficial entomopathogenic nematodes, plant-parasitic nematodes, as well as microbial feeders, are thus under diffuse selection for producing specific molecules in the rhizosphere that maximize their fitness. However, it is largely unknown how selection may operate and how belowground signaling may evolve. Given the paucity of data for certain groups of nematodes, future work is needed to better understand the evolutionary mechanisms of communication between plant roots and soil biota.
Resumo:
The brain-spliced isoform of Myosin Va (BR-MyoVa) plays an important role in the transport of dense core secretory granules (SGs) to the plasma membrane in hormone and neuropeptide-producing cells. The molecular composition of the protein complex that recruits BR-MyoVa to SGs and regulates its function has not been identified to date. We have identified interaction between SG-associated proteins granuphilin-a/b (Gran-a/b), BR-MyoVa and Rab27a, a member of the Rab family of GTPases. Gran-a/b-BR-MyoVa interaction is direct, involves regions downstream of the Rab27-binding domain, and the C-terminal part of Gran-a determines exon specificity. MyoVa and Gran-a/b are partially colocalised on SGs and disruption of Gran-a/b-BR-MyoVa binding results in a perinuclear accumulation of SGs which augments nutrient-stimulated hormone secretion in pancreatic beta-cells. These results indicate the existence of at least another binding partner of BR-MyoVa that was identified as rabphilin-3A (Rph-3A). BR-MyoVa-Rph-3A interaction is also direct and enhanced when secretion is activated. The BR-MyoVa-Rph-3A and BR-MyoVa-Gran-a/b complexes are linked to a different subset of SGs, and simultaneous inhibition of these complexes nearly completely blocks stimulated hormone release. This study demonstrates that multiple binding partners of BR-MyoVa regulate SG transport, and this molecular mechanism is universally used by neuronal, endocrine and neuroendocrine cells.
Resumo:
In recent research, both soil (root-zone) and air temperature have been used as predictors for the treeline position worldwide. In this study, we intended to (a) test the proposed temperature limitation at the treeline, and (b) investigate effects of season length for both heat sum and mean temperature variables in the Swiss Alps. As soil temperature data are available for a limited number of sites only, we developed an air-to-soil transfer model (ASTRAMO). The air-to-soil transfer model predicts daily mean root-zone temperatures (10cm below the surface) at the treeline exclusively from daily mean air temperatures. The model using calibrated air and root-zone temperature measurements at nine treeline sites in the Swiss Alps incorporates time lags to account for the damping effect between air and soil temperatures as well as the temporal autocorrelations typical for such chronological data sets. Based on the measured and modeled root-zone temperatures we analyzed. the suitability of the thermal treeline indicators seasonal mean and degree-days to describe the Alpine treeline position. The root-zone indicators were then compared to the respective indicators based on measured air temperatures, with all indicators calculated for two different indicator period lengths. For both temperature types (root-zone and air) and both indicator periods, seasonal mean temperature was the indicator with the lowest variation across all treeline sites. The resulting indicator values were 7.0 degrees C +/- 0.4 SD (short indicator period), respectively 7.1 degrees C +/- 0.5 SD (long indicator period) for root-zone temperature, and 8.0 degrees C +/- 0.6 SD (short indicator period), respectively 8.8 degrees C +/- 0.8 SD (long indicator period) for air temperature. Generally, a higher variation was found for all air based treeline indicators when compared to the root-zone temperature indicators. Despite this, we showed that treeline indicators calculated from both air and root-zone temperatures can be used to describe the Alpine treeline position.