93 resultados para sex-differences
Resumo:
AIMS: Women and men have different clinical presentations and outcomes in coronary artery disease (CAD). We tested the hypothesis that sex differences may influence coronary atherosclerotic burden and coronary endothelial function before development of obstructive CAD. METHODS AND RESULTS: A total of 142 patients (53 men, 89 women; mean +/- SD age, 49.3 +/- 11.7 years) with early CAD simultaneously underwent intravascular ultrasonography and coronary endothelial function assessment. Atheroma burden in the left main and proximal left anterior descending (LAD) arteries was significantly greater in men than women (median, 23.0% vs. 14.1%, P = 0.002; median, 40.1% vs. 29.3%, P = 0.001, respectively). Atheroma eccentricity in the proximal LAD artery was significantly higher in men than women (median, 0.89 vs. 0.80, P = 0.04). The length of the coronary segments with endothelial dysfunction was significantly longer in men than women (median, 39.2 vs. 11.1 mm, P = 0.002). In contrast, maximal coronary flow reserve was significantly lower in women than men (2.80 vs. 3.30, P < 0.001). Sex was an independent predictor of atheroma burden in the left main and proximal LAD arteries (both P < 0.05) by multivariate analysis. CONCLUSION: Men have greater atheroma burden, more eccentric atheroma, and more diffuse epicardial endothelial dysfunction than women. These results suggest that men have more severe structural and functional abnormalities in epicardial coronary arteries than women, even in patients with early atherosclerosis, which may result in the higher incidence rates of CAD and ST-segment myocardial infarction in men than women.
Resumo:
The increase in VLDL TAG concentration after ingestion of a high-fructose diet is more pronounced in men than in pre-menopausal women. We hypothesised that this may be due to a lower fructose-induced stimulation of de novo lipogenesis (DNL) in pre-menopausal women. To evaluate this hypothesis, nine healthy male and nine healthy female subjects were studied after ingestion of oral loads of fructose enriched with 13C6 fructose. Incorporation of 13C into breath CO2, plasma glucose and plasma VLDL palmitate was monitored to evaluate total fructose oxidation, gluconeogenesis and hepatic DNL, respectively. Substrate oxidation was assessed by indirect calorimetry. After 13C fructose ingestion, 44.0 (sd 3.2)% of labelled carbons were recovered in plasma glucose in males v. 41.9 (sd 2.3)% in females (NS), and 42.9 (sd 3.7)% of labelled carbons were recovered in breath CO2 in males v. 43.0 (sd 4.5)% in females (NS), indicating similar gluconeogenesis from fructose and total fructose oxidation in males and females. The area under the curve for 13C VLDL palmitate tracer-to-tracee ratio was four times lower in females (P < 0.05), indicating a lower DNL. Furthermore, lipid oxidation was significantly suppressed in males (by 16.4 (sd 5.2), P < 0.05), but it was not suppressed in females ( -1.3 (sd 4.7)%). These results support the hypothesis that females may be protected against fructose-induced hypertriglyceridaemia because of a lower stimulation of DNL and a lower suppression of lipid oxidation.
Resumo:
Several observations support the hypothesis that differences in synaptic and regional cerebral plasticity between the sexes account for the high ratio of males to females in autism. First, males are more susceptible than females to perturbations in genes involved in synaptic plasticity. Second, sex-related differences in non-autistic brain structure and function are observed in highly variable regions, namely, the heteromodal associative cortices, and overlap with structural particularities and enhanced activity of perceptual associative regions in autistic individuals. Finally, functional cortical reallocations following brain lesions in non-autistic adults (for example, traumatic brain injury, multiple sclerosis) are sex-dependent. Interactions between genetic sex and hormones may therefore result in higher synaptic and consecutively regional plasticity in perceptual brain areas in males than in females. The onset of autism may largely involve mutations altering synaptic plasticity that create a plastic reaction affecting the most variable and sexually dimorphic brain regions. The sex ratio bias in autism may arise because males have a lower threshold than females for the development of this plastic reaction following a genetic or environmental event.
Resumo:
The present study analyses the relationship between Anxiety and Impulsivity personality factors and emotions, by controlling for country and sex effects in a sample of Spanish and Swiss university students. Emotions were assessed through the International Affective Picture System (IAPS) of pictures (valence/arousal) using the Self-Assessment Manikin (SAM) procedure. The mixed valence/arousal groups' pictures were formed according to Tok, Koyuncu, Dural and Catikkas procedure (2010). Results showed that females scored significantly higher in Anxiety factor and men in Impulsivity factor in both countries. The effect of sex was highly significant for Anxiety (ŋ2: 0.12), but there was no significant effect of the country. Also, females obtained higher scores in the four valence/arousal pictures groups. The sex effect was particularly robust for negative valence-high arousal (ŋ2: 0.13). Impulsivity correlated with high ratings of positive valence-high arousal while Anxiety correlated with high ratings of negative valence-high arousal and with high ratings of negative valence-low arousal in both sexes, although scores were higher for females. Structural Equation Modelling confirmed these relationships. Nevertheless, Anxiety and Impulsivity explained only a small amount of the accounted variance of the self-reported valence and arousal of the pictures.
Resumo:
Human biomonitoring is a widely used method in the assessment of occupational exposure to chemical substances and recommended biological limits are published periodically for interpretation and decision-making. However, it is increasingly recognized that a large variability is associated with biological monitoring, making interpretation less efficient than assumed. In order to improve the applicability of biological monitoring, specific factors responsible for this variability should be identified and their contribution quantified. Among these factors, age and sex are easily identifiable, and present knowledge about pharmaceutical chemicals suggests that they play an important role on the toxicokinetics of occupational chemical agents, and therefore on the biological monitoring results.The aim of the present research project was to assess the influence of age and sex on biological indicators corresponding to organic solvents. This has been done experimentally and by toxicokinetic computer simulation. Another purpose was to explore the effect of selected CYP2E1 polymorphisms on the toxicokinetic profile.Age differences were identified by numerical simulations using a general toxicokinetic model from a previous study which was applied to 14 chemicals, representing 21 specific biological entities, with, among others, toluene, phenol, lead and mercury. These models were runn with the modified parameters, indicating in some cases important differences due to age. The expected changes are mostly of the order of 10-20 %, but differences up to 50 % were observed in some cases. These differences appear to depend on the chemical and on the biological entity considered.Sex differences were quantified by controlled human exposures, which were carried out in a 12 m3 exposure chamber for three organic solvents separately: methyl ethyl ketone, 1-methoxy-2-propanol and 1,1,1-trichloroethane. The human volunteer groups were composed 12 of ten young men and fifteen young women, the latter subdivided into those with and without hormonal contraceptive. They were exposed during six hours at rest and at half of the threshold limit value. The kinetics of the parent compounds (organic volatiles) and their metabolite(s) were followed in blood, urine and expired air over time. Analyses of the solvent and their metabolites were performed by using headspace gas chromatography, CYP2E1 genotypes by using PCR-based RFLP methods. Experimental data were used to calibrate the toxicokinetic models developed for the three solvents. The results obtained for the different biomarkers of exposure mainly showed an effect on the urinary levels of several biomarkers among women due to the use of hormonal contraceptive, with an increase of about 50 % in the metabolism rate. The results also showed a difference due to the genotype CYP2E1*6, when exposed to methyl ethyl ketone, with a tendency to increase CYP2E1 activity when volunteers were carriers of the mutant allele. Simulations showed that it is possible to use simple toxicokinetic tools in order to predict internal exposure when exposed to organic solvents. Our study suggests that not only physiological differences but also exogenous sex hormones could influence CYP2E1 enzyme activity. The variability among the urinary biological indicators levels gives evidence of an interindividual susceptibility, an aspect that should have its place in the approaches for setting limits of occupational exposure.
Resumo:
Elevated high-sensitivity C-reactive protein (hs-CRP) concentration is associated with an increased risk of cardiovascular disease but this association seems to be largely mediated via conventional cardiovascular risk factors. In particular, the association between hs-CRP and obesity has been extensively demonstrated and correlations are stronger in women than men. We used fractional polynomials-a method that allows flexible modeling of non linear relations-to investigate the dose/response mathematical relationship between hs-CRP and several indicators of adiposity in Caucasians (Switzerland) and Africans (Seychelles) surveyed in two population-based studies. This relationship was non-linear exhibiting a steeper slope for low levels of hs-CRP and a higher level in women. The observed sex difference in the relationship between hs-CRP and adiposity almost disappeared upon adjustment for leptin, suggesting that these sex differences might be partially mediated, by leptin. All these relationship were similar in Caucasians and Africans. This is the first report on a non-linear relation, stratified by gender, between hs-CRP and adiposity.
Resumo:
To evaluate sex differences in human immunodeficiency virus (HIV) disease progression before (pre-1997) and after (1997-2006) introduction of highly active antiretroviral therapy, the authors used data from a collaboration of 23 HIV seroconverter cohort studies from Europe, Australia, and Canada restricted to the 6,923 seroconverters infected through injecting drug use and sex between men and women. Within a competing risk framework, they used Cox proportional hazards models allowing for late entry to evaluate sex differences in time from HIV seroconversion to death, to acquired immunodeficiency syndrome (AIDS), and to each first AIDS-defining disease and death without AIDS. While no significant sex differences were found before 1997, from 1997 onward, women had a lower risk of AIDS (adjusted cumulative relative risk (aCRR) = 0.76, 95% confidence interval (CI): 0.63, 0.90) and death (adjusted hazard ratio = 0.68, 95% CI: 0.56, 0.82) than men did. Compared with men, women also had lower risks of AIDS dementia complex (aCRR = 0.23, 95% CI: 0.07, 0.74), tuberculosis (aCRR = 0.60, 95% CI: 0.39, 0.92), Kaposi's sarcoma (aCRR = 0.27, 95% CI: 0.07, 0.99), lymphomas (aCRR = 0.47, 95% CI: 0.23, 0.96), and death without AIDS (aCRR = 0.74, 95% CI: 0.56, 0.98). Sex differences in HIV disease progression have become larger and statistically significant in the era of highly active antiretroviral therapy, supporting a stronger impact of health interventions among women.
Resumo:
In sharp contrast with birds and mammals, the sex chromosomes of ectothermic vertebrates are often undifferentiated, for reasons that remain debated. A linkage map was recently published for Rana temporaria (Linnaeus, 1758) from Fennoscandia (Eastern European lineage), with a proposed sex-determining role for linkage group 2 (LG2). We analysed linkage patterns in lowland and highland populations from Switzerland (Western European lineage), with special focus on LG2. Sibship analyses showed large differences from the Fennoscandian map in terms of recombination rates and loci order, pointing to large-scale inversions or translocations. All linkage groups displayed extreme heterochiasmy (total map length was 12.2 cM in males, versus 869.8 cM in females). Sex determination was polymorphic within populations: a majority of families (with equal sex ratios) showed a strong correlation between offspring phenotypic sex and LG2 paternal haplotypes, whereas other families (some of which with female-biased sex ratios) did not show any correlation. The factors determining sex in the latter could not be identified. This coexistence of several sex-determination systems should induce frequent recombination of X and Y haplotypes, even in the absence of male recombination. Accordingly, we found no sex differences in allelic frequencies on LG2 markers among wild-caught male and female adults, except in one high-altitude population, where nonrecombinant Y haplotypes suggest sex to be entirely determined by LG2. Multifactorial sex determination certainly contributes to the lack of sex-chromosome differentiation in amphibians.
Resumo:
Using game theory, we developed a kin-selection model to investigate the consequences of local competition and inbreeding depression on the evolution of natal dispersal. Mating systems have the potential to favor strong sex biases in dispersal because sex differences in potential reproductive success affect the balance between local resource competition and local mate competition. No bias is expected when local competition equally affects males and females, as happens in monogamous systems and also in polygynous or promiscuous ones as long as female fitness is limited by extrinsic factors (breeding resources). In contrast, a male-biased dispersal is predicted when local mate competition exceeds local resource competition, as happens under polygyny/promiscuity when female fitness is limited by intrinsic factors (maximal rate of processing resources rather than resources themselves). This bias is reinforced by among-sex interactions: female philopatry enhances breeding opportunities for related males, while male dispersal decreases the chances that related females will inbreed. These results meet empirical patterns in mammals: polygynous/promiscuous species usually display a male-biased dispersal, while both sexes disperse in monogamous species. A parallel is drawn with sex-ratio theory, which also predicts biases toward the sex that suffers less from local competition. Optimal sex ratios and optimal sex-specific dispersal show mutual dependence, which argues for the development of coevolution models.
Resumo:
1. Sex differences in levels of parasite infection are a common rule in a wide range of mammals, with males usually more susceptible than females. Sex-specific exposure to parasites, e.g. mediated through distinct modes of social aggregation between and within genders, as well as negative relationships between androgen levels and immune defences are thought to play a major role in this pattern. 2. Reproductive female bats live in close association within clusters at maternity roosts, whereas nonbreeding females and males generally occupy solitary roosts. Bats represent therefore an ideal model to study the consequences of sex-specific social and spatial aggregation on parasites' infection strategies. 3. We first compared prevalence and parasite intensities in a host-parasite system comprising closely related species of ectoparasitic mites (Spinturnix spp.) and their hosts, five European bat species. We then compared the level of parasitism between juvenile males and females in mixed colonies of greater and lesser mouse-eared bats Myotis myotis and M. blythii. Prevalence was higher in adult females than in adult males stemming from colonial aggregations in all five studied species. Parasite intensity was significantly higher in females in three of the five species studied. No difference in prevalence and mite numbers was found between male and female juveniles in colonial roosts. 4. To assess whether observed sex-biased parasitism results from differences in host exposure only, or, alternatively, from an active, selected choice made by the parasite, we performed lab experiments on short-term preferences and long-term survival of parasites on male and female Myotis daubentoni. When confronted with adult males and females, parasites preferentially selected female hosts, whereas no choice differences were observed between adult females and subadult males. Finally, we found significantly higher parasite survival on adult females compared with adult males. 5. Our study shows that social and spatial aggregation favours sex-biased parasitism that could be a mere consequence of an active and adaptive parasite choice for the more profitable host.
Resumo:
Geographical body size variation has long interested evolutionary biologists, and a range of mechanisms have been proposed to explain the observed patterns. It is considered to be more puzzling in ectotherms than in endotherms, and integrative approaches are necessary for testing non-exclusive alternative mechanisms. Using lacertid lizards as a model, we adopted an integrative approach, testing different hypotheses for both sexes while incorporating temporal, spatial, and phylogenetic autocorrelation at the individual level. We used data on the Spanish Sand Racer species group from a field survey to disentangle different sources of body size variation through environmental and individual genetic data, while accounting for temporal and spatial autocorrelation. A variation partitioning method was applied to separate independent and shared components of ecology and phylogeny, and estimated their significance. Then, we fed-back our models by controlling for relevant independent components. The pattern was consistent with the geographical Bergmann's cline and the experimental temperature-size rule: adults were larger at lower temperatures (and/or higher elevations). This result was confirmed with additional multi-year independent data-set derived from the literature. Variation partitioning showed no sex differences in phylogenetic inertia but showed sex differences in the independent component of ecology; primarily due to growth differences. Interestingly, only after controlling for independent components did primary productivity also emerge as an important predictor explaining size variation in both sexes. This study highlights the importance of integrating individual-based genetic information, relevant ecological parameters, and temporal and spatial autocorrelation in sex-specific models to detect potentially important hidden effects. Our individual-based approach devoted to extract and control for independent components was useful to reveal hidden effects linked with alternative non-exclusive hypothesis, such as those of primary productivity. Also, including measurement date allowed disentangling and controlling for short-term temporal autocorrelation reflecting sex-specific growth plasticity.
Resumo:
Contrasting with the situation found in birds and mammals, sex chromosomes are generally homomorphic in poikilothermic vertebrates. This homomorphy was recently shown to result from occasional X-Y recombinations (not from turnovers) in several European species of tree frogs (Hyla arborea, H. intermedia and H. molleri). Because of recombination, however, alleles at sex-linked loci were rarely diagnostic at the population level; support for sex linkage had to rely on multilocus associations, combined with occasional sex differences in allelic frequencies. Here, we use direct evidence, obtained from anatomical and histological analyses of offspring with known pedigrees, to show that the Eastern tree frog (H. orientalis) shares the same pair of sex chromosomes, with identical patterns of male heterogamety and complete absence of X-Y recombination in males. Conservation of an ancestral pair of sex chromosomes, regularly rejuvenated via occasional X-Y recombination, seems thus a widespread pattern among Hyla species. Sibship analyses also identified discrepancies between genotypic and phenotypic sex among offspring, associated with abnormal gonadal development, suggesting a role for sexually antagonistic genes on the sex chromosomes.
Resumo:
Given the anthropometric differences between men and women and previous evidence of sex-difference in genetic effects, we conducted a genome-wide search for sexually dimorphic associations with height, weight, body mass index, waist circumference, hip circumference, and waist-to-hip-ratio (133,723 individuals) and took forward 348 SNPs into follow-up (additional 137,052 individuals) in a total of 94 studies. Seven loci displayed significant sex-difference (FDR<5%), including four previously established (near GRB14/COBLL1, LYPLAL1/SLC30A10, VEGFA, ADAMTS9) and three novel anthropometric trait loci (near MAP3K1, HSD17B4, PPARG), all of which were genome-wide significant in women (P<5×10(-8)), but not in men. Sex-differences were apparent only for waist phenotypes, not for height, weight, BMI, or hip circumference. Moreover, we found no evidence for genetic effects with opposite directions in men versus women. The PPARG locus is of specific interest due to its role in diabetes genetics and therapy. Our results demonstrate the value of sex-specific GWAS to unravel the sexually dimorphic genetic underpinning of complex traits.