17 resultados para sentimental novel Hispano-American
Resumo:
The history of biodiversity is characterized by a continual replacement of branches in the tree of life. The rise and demise of these branches (clades) are ultimately determined by changes in speciation and extinction rates, often interpreted as a response to varying abiotic and biotic factors. However, understanding the relative importance of these factors remains a major challenge in evolutionary biology. Here we analyze the rich North American fossil record of the dog family Canidae and of other carnivores to tease apart the roles of competition, body size evolution, and climate change on the sequential replacement of three canid subfamilies (two of which have gone extinct). We develop a novel Bayesian analytic framework to show that competition from multiple carnivore clades successively drove the demise and replacement of the two extinct canid subfamilies by increasing their extinction rates and suppressing their speciation. Competitive effects have likely come from ecologically similar species from both canid and felid clades. These results imply that competition among entire clades, generally considered a rare process, can play a more substantial role than climate change and body size evolution in determining the sequential rise and decline of clades.
Resumo:
The POU4F2/Brn-3b transcription factor has been identified as a potentially novel regulator of key metabolic processes. Loss of this protein in Brn-3b knockout (KO) mice causes profound hyperglycemia and insulin resistance (IR), normally associated with type 2 diabetes (T2D), whereas Brn-3b is reduced in tissues taken from obese mice fed on high-fat diets (HFD), which also develop hyperglycemia and IR. Furthermore, studies in C2C12 myocytes show that Brn-3b mRNA and proteins are induced by glucose but inhibited by insulin, suggesting that this protein is itself highly regulated in responsive cells. Analysis of differential gene expression in skeletal muscle from Brn-3b KO mice showed changes in genes that are implicated in T2D such as increased glycogen synthase kinase-3β and reduced GLUT4 glucose transporter. The GLUT4 gene promoter contains multiple Brn-3b binding sites and is directly transactivated by this transcription factor in cotransfection assays, whereas chromatin immunoprecipitation assays confirm that Brn-3b binds to this promoter in vivo. In addition, correlation between GLUT4 and Brn-3b in KO tissues or in C2C12 cells strongly supports a close association between Brn-3b levels and GLUT4 expression. Since Brn-3b is regulated by metabolites and insulin, this may provide a mechanism for controlling key genes that are required for normal metabolic processes in insulin-responsive tissues and its loss may contribute to abnormal glucose uptake.