66 resultados para self-imaging effect
Resumo:
Elderly individuals display a rapid age-related increase in intraindividual variability (IIV) of their performances. This phenomenon could reflect subtle changes in frontal lobe integrity. However, structural studies in this field are still missing. To address this issue, we computed an IIV index for a simple reaction time (RT) task and performed magnetic resonance imaging (MRI) including voxel based morphometry (VBM) and the tract based spatial statistics (TBSS) analysis of diffusion tensor imaging (DTI) in 61 adults aged from 22 to 88 years. The age-related IIV increase was associated with decreased fractional anisotropy (FA) as well as increased radial (RD) and mean (MD) diffusion in the main white matter (WM) fiber tracts. In contrast, axial diffusion (AD) and grey matter (GM) densities did not show any significant correlation with IIV. In multivariate models, only FA has an age-independent effect on IIV. These results revealed that WM but not GM changes partly mediated the age-related increase of IIV. They also revealed that the association between WM and IIV could not be only attributed to the damage of frontal lobe circuits but concerned the majority of interhemispheric and intrahemispheric corticocortical connections.
Resumo:
Objective: To measure renal tissue oxygenation in young normo-and hypertensive volunteers under conditions of salt loading and depletion using blood oxygen level dependent magnetic resonance imaging (BOLD-MRI). Design and Methods: Ten normotensive (NT) male volunteers (age 26.5_7.4 y) and eight non-treated, hypertensive (HT) male volunteers (age 28.8_5.7 y) were studied after one week on a high salt (HS) regimen (6g of salt/day added to their normal regimen) and again after one week of a low sodium diet (LS). On the 8th day, BOLD-MRI was performed under standard hydration conditions. Four coronal slices were selected in each kidney, and combination sequence was used to acquire T2* weighted images. The mean R2* (1/T2*) was measured to determine cortical and medullar oxygenation. Results: Baseline characteristics and their changes are shown in the table. The mean cortical R2* was not different under conditions of HS or LS (17.8_1.3 vs. 18.2_0.6 respectively in NT group, p_0.27; 17.4_0.6 vs 17.8_0.9 in HT group, p_0.16). However, the mean medullary R2* was significantly lower under LS conditions in both groups (31.3_0.6 vs 28.1_0.8 in NT group, p_0.05; 30.3_0.8 vs 27.9_1.5 in HT group, p_0.05), corresponding to higher medullary oxygenation as compared to HS conditions, without significant changes in hemoglobin or hematocrit values. The salt induced changes in medullary oxygenation were comparable in the two groups (ANOVA, p_0.1). Conclusion: Dietary sodium restriction leads to increased renal medullary oxygenation compared to high sodium intake in normo-and hypertensive subjects. This observation may in part explain the potential renal benefits of a low sodium intake.
Resumo:
Self-consciousness has mostly been approached by philosophical enquiry and not by empirical neuroscientific study, leading to an overabundance of diverging theories and an absence of data-driven theories. Using robotic technology, we achieved specific bodily conflicts and induced predictable changes in a fundamental aspect of self-consciousness by altering where healthy subjects experienced themselves to be (self-location). Functional magnetic resonance imaging revealed that temporo-parietal junction (TPJ) activity reflected experimental changes in self-location that also depended on the first-person perspective due to visuo-tactile and visuo-vestibular conflicts. Moreover, in a large lesion analysis study of neurological patients with a well-defined state of abnormal self-location, brain damage was also localized at TPJ, providing causal evidence that TPJ encodes self-location. Our findings reveal that multisensory integration at the TPJ reflects one of the most fundamental subjective feelings of humans: the feeling of being an entity localized at a position in space and perceiving the world from this position and perspective.
Resumo:
The effect of copper (Cu) filtration on image quality and dose in different digital X-ray systems was investigated. Two computed radiography systems and one digital radiography detector were used. Three different polymethylmethacrylate blocks simulated the pediatric body. The effect of Cu filters of 0.1, 0.2, and 0.3 mm thickness on the entrance surface dose (ESD) and the corresponding effective doses (EDs) were measured at tube voltages of 60, 66, and 73 kV. Image quality was evaluated in a contrast-detail phantom with an automated analyzer software. Cu filters of 0.1, 0.2, and 0.3 mm thickness decreased the ESD by 25-32%, 32-39%, and 40-44%, respectively, the ranges depending on the respective tube voltages. There was no consistent decline in image quality due to increasing Cu filtration. The estimated ED of anterior-posterior (AP) chest projections was reduced by up to 23%. No relevant reduction in the ED was noted in AP radiographs of the abdomen and pelvis or in posterior-anterior radiographs of the chest. Cu filtration reduces the ESD, but generally does not reduce the effective dose. Cu filters can help protect radiosensitive superficial organs, such as the mammary glands in AP chest projections.
Resumo:
The large spatial inhomogeneity in transmit B, field (B-1(+)) observable in human MR images at hi h static magnetic fields (B-0) severely impairs image quality. To overcome this effect in brain T-1-weighted images the, MPRAGE sequence was modified to generate two different images at different inversion times MP2RAGE By combining the two images in a novel fashion, it was possible to create T-1-weigthed images where the result image was free of proton density contrast, T-2* contrast, reception bias field, and, to first order transmit field inhomogeneity. MP2RAGE sequence parameters were optimized using Bloch equations to maximize contrast-to-noise ratio per unit of time between brain tissues and minimize the effect of B-1(+) variations through space. Images of high anatomical quality and excellent brain tissue differentiation suitable for applications such as segmentation and voxel-based morphometry were obtained at 3 and 7 T. From such T-1-weighted images, acquired within 12 min, high-resolution 3D T-1 maps were routinely calculated at 7 T with sub-millimeter voxel resolution (0.65-0.85 mm isotropic). T-1 maps were validated in phantom experiments. In humans, the T, values obtained at 7 T were 1.15 +/- 0.06 s for white matter (WM) and 1.92 +/- 0.16 s for grey matter (GM), in good agreement with literature values obtained at lower spatial resolution. At 3 T, where whole-brain acquisitions with 1 mm isotropic voxels were acquired in 8 min the T-1 values obtained (0.81 +/- 0.03 S for WM and 1.35 +/- 0.05 for GM) were once again found to be in very good agreement with values in the literature. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
INTRODUCTION: Common variation in the CHRNA5-CHRNA3-CHRNB4 gene region is robustly associated with smoking quantity. Conversely, the association between one of the most significant single nucleotide polymorphisms (SNPs; rs1051730 within the CHRNA3 gene) with perceived difficulty or willingness to quit smoking among current smokers is unknown. METHODS: Cross-sectional study including current smokers, 502 women, and 552 men. Heaviness of smoking index (HSI), difficulty, attempting, and intention to quit smoking were assessed by questionnaire. RESULTS: The rs1051730 SNP was associated with increased HSI (age, gender, and education-adjusted mean ± SE: 2.6 ± 0.1, 2.2 ± 0.1, and 2.0 ± 0.1 for AA, AG, and GG genotypes, respectively, p < .01). Multivariate logistic regression adjusting for gender, age, education, leisure-time physical activity, and personal history of cardiovascular or lung disease showed rs1051730 to be associated with higher smoking dependence (odds ratio [OR] and 95% CI for each additional A-allele: 1.38 [1.11-1.72] for smoking more than 20 cigarette equivalents/day; 1.31 [1.00-1.71] for an HSI ≥5 and 1.32 [1.05-1.65] for smoking 5 min after waking up) and borderline associated with difficulty to quit (OR = 1.29 [0.98-1.70]), but this relationship was no longer significant after adjusting for nicotine dependence. Also, no relationship was found with willingness (OR = 1.03 [0.85-1.26]), attempt (OR = 1.00 [0.83-1.20]), or preparation (OR = 0.95 [0.38-2.38]) to quit. Similar findings were obtained for other SNPs, but their effect on nicotine dependence was no longer significant after adjusting for rs1051730. Conclusions: These data confirm the effect of rs1051730 on nicotine dependence but failed to find any relationship with difficulty, willingness, and motivation to quit.
Resumo:
Some experimental studies have suggested a beneficial effect of the mammalian target of rapamycin (mTOR) inhibitor use on hepatic and renal cyst growth in patients with autosomal dominant polycystic kidney disease (ADPKD). However, the results of clinical studies are conflicting and the role of mTOR inhibitors is still uncertain. We report the case of a patient with ADPKD who underwent deceased kidney transplantation because of an end-stage renal disease. The evolution was uneventful with an excellent graft function under cyclosporine (CsA) monotherapy. Some years later, the patient developed a symptomatic hepatomegaly due to growth of cysts. CsA was replaced by sirolimus, an mTOR inhibitor, in order to reduce or control the increase in the cyst and liver volume. Despite the switch, the hepatic volume increased by 25% in two years. Finally sirolimus was stopped because of the lack of effect on hepatic cyst growth and the presence of sirolimus side effects. The interest of our case resides in the followup by MRI imaging during the mTOR inhibitor treatment and 15 months after the restart of the initial immunosuppressive therapy. This observation indicates that mTOR inhibitors did not have significant effect on cyst-associated hepatic growth in our patient, which is consistent with some results of recent large clinical studies.
Resumo:
OBJECT Monoenergetic imaging with dual-energy CT has been proposed to reduce metallic artifacts in comparison with conventional polychromatic CT. The purpose of this study is to systematically evaluate and define the optimal dual-energy CT imaging parameters for specific cervical spinal implant alloy compositions. METHODS Spinal fixation rods of cobalt-chromium or titanium alloy inserted into the cervical spine section of an Alderson Rando anthropomorphic phantom were imaged ex vivo with fast-kilovoltage switching CT at 80 and 140 peak kV. The collimation width and field of view were varied between 20 and 40 mm and medium to large, respectively. Extrapolated monoenergetic images were generated at 70, 90, 110, and 130 kiloelectron volts (keV). The standard deviation of voxel intensities along a circular line profile around the spine was used as an index of the magnitude of metallic artifact. RESULTS The metallic artifact was more conspicuous around the fixation rods made of cobalt-chromium than those of titanium alloy. The magnitude of metallic artifact seen with titanium fixation rods was minimized at monoenergies of 90 keV and higher, using a collimation width of 20 mm and large field of view. The magnitude of metallic artifact with cobalt-chromium fixation rods was minimized at monoenergies of 110 keV and higher; collimation width or field of view had no effect. CONCLUSIONS Optimization of acquisition settings used with monoenergetic CT studies might yield reduced metallic artifacts.
Resumo:
PURPOSE: To assess the diagnostic performance of respiratory self-navigation for whole-heart coronary magnetic resonance (MR) angiography in a patient cohort referred for diagnostic cardiac MR imaging. MATERIALS AND METHODS: Written informed consent was obtained from all participants for this institutional review board-approved study. Self-navigated coronary MR angiography was performed after administration of a contrast agent in 78 patients (mean age, 48.5 years ± 20.7 [standard deviation]; 53 male patients) referred for cardiac MR imaging because of coronary artery disease (n = 40), cardiomyopathy (n = 14), congenital anomaly (n = 17), or "other" (n = 7). Examination duration was recorded, and the image quality for each coronary segment was assessed with consensus reading. Vessel sharpness, length, and diameter were measured. Quantitative values in proximal, middle, and distal segments were compared by using analysis of variance and t tests. A double-blinded comparison with the results of x-ray angiography was performed when such results were available. RESULTS: When patients with different indications for cardiac MR imaging were examined with self-navigated postcontrast coronary MR angiography, whole-heart data sets with 1.15-mm isotropic spatial resolution were acquired in an average of 7.38 minutes ± 1.85. The main and proximal coronary segments could be visualized in 92.3% of cases, while the middle and distal segments could be visualized in 84.0% and 55.8% of cases, respectively. Subjective scores and vessel sharpness were significantly higher in the proximal segments than in the middle and distal segments (P < .05). Anomalies of the coronary arteries could be confirmed or excluded in all cases. Per-vessel sensitivity and specificity for stenosis detection were 64.7% and 85.0%, respectively, in the 31 patients for whom reference standard x-ray coronary angiography results were available. CONCLUSION: The self-navigated coronary MR angiography sequence shows promise for coronary imaging. However, technical improvements are needed to improve image quality, especially in the more distal coronary segments.
Resumo:
PURPOSE: Respiratory motion correction remains a challenge in coronary magnetic resonance imaging (MRI) and current techniques, such as navigator gating, suffer from sub-optimal scan efficiency and ease-of-use. To overcome these limitations, an image-based self-navigation technique is proposed that uses "sub-images" and compressed sensing (CS) to obtain translational motion correction in 2D. The method was preliminarily implemented as a 2D technique and tested for feasibility for targeted coronary imaging. METHODS: During a 2D segmented radial k-space data acquisition, heavily undersampled sub-images were reconstructed from the readouts collected during each cardiac cycle. These sub-images may then be used for respiratory self-navigation. Alternatively, a CS reconstruction may be used to create these sub-images, so as to partially compensate for the heavy undersampling. Both approaches were quantitatively assessed using simulations and in vivo studies, and the resulting self-navigation strategies were then compared to conventional navigator gating. RESULTS: Sub-images reconstructed using CS showed a lower artifact level than sub-images reconstructed without CS. As a result, the final image quality was significantly better when using CS-assisted self-navigation as opposed to the non-CS approach. Moreover, while both self-navigation techniques led to a 69% scan time reduction (as compared to navigator gating), there was no significant difference in image quality between the CS-assisted self-navigation technique and conventional navigator gating, despite the significant decrease in scan time. CONCLUSIONS: CS-assisted self-navigation using 2D translational motion correction demonstrated feasibility of producing coronary MRA data with image quality comparable to that obtained with conventional navigator gating, and does so without the use of additional acquisitions or motion modeling, while still allowing for 100% scan efficiency and an improved ease-of-use. In conclusion, compressed sensing may become a critical adjunct for 2D translational motion correction in free-breathing cardiac imaging with high spatial resolution. An expansion to modern 3D approaches is now warranted.
Resumo:
In this study we investigated the effect of medial temporal lobe epilepsy (MTLE) on the global characteristics of brain connectivity estimated by topological measures. We used DSI (Diffusion Spectrum Imaging) to construct a connectivity matrix where the nodes represents the anatomical ROIs and the edges are the connections between any pair of ROIs weighted by the mean GFA/FA values. A significant difference was found between the patient group vs control group in characteristic path length, clustering coefficient and small-worldness. This suggests that the MTLE network is less efficient compared to the network of the control group.
Resumo:
Introduction: Neuroimaging of the self focused on high-level mechanisms such as language, memory or imagery of the self. Recent evidence suggests that low-level mechanisms of multisensory and sensorimotor integration may play a fundamental role in encoding self-location and the first-person perspective (Blanke and Metzinger, 2009). Neurological patients with out-of body experiences (OBE) suffer from abnormal self-location and the first-person perspective due to a damage in the temporo-parietal junction (Blanke et al., 2004). Although self-location and the first-person perspective can be studied experimentally (Lenggenhager et al., 2009), the neural underpinnings of self-location have yet to be investigated. To investigate the brain network involved in self-location and first-person perspective we used visuo-tactile multisensory conflict, magnetic resonance (MR)-compatible robotics, and fMRI in study 1, and lesion analysis in a sample of 9 patients with OBE due to focal brain damage in study 2. Methods: Twenty-two participants saw a video showing either a person's back or an empty room being stroked (visual stimuli) while the MR-compatible robotic device stroked their back (tactile stimulation). Direction and speed of the seen stroking could either correspond (synchronous) or not (asynchronous) to those of the seen stroking. Each run comprised the four conditions according to a 2x2 factorial design with Object (Body, No-Body) and Synchrony (Synchronous, Asynchronous) as main factors. Self-location was estimated using the mental ball dropping (MBD; Lenggenhager et al., 2009). After the fMRI session participants completed a 6-item adapted from the original questionnaire created by Botvinick and Cohen (1998) and based on questions and data obtained by Lenggenhager et al. (2007, 2009). They were also asked to complete a questionnaire to disclose the perspective they adopted during the illusion. Response times (RTs) for the MBD and fMRI data were analyzed with a 3-way mixed model ANOVA with the in-between factor Perspective (up, down) and the two with-in factors Object (body, no-body) and Stroking (synchronous, asynchronous). Quantitative lesion analysis was performed using MRIcron (Rorden et al., 2007). We compared the distributions of brain lesions confirmed by multimodality imaging (Knowlton, 2004) in patients with OBE with those showing complex visual hallucinations involving people or faces, but without any disturbance of self-location and first person perspective. Nine patients with OBE were investigated. The control group comprised 8 patients. Structural imaging data were available for normalization and co-registration in all the patients. Normalization of each patient's lesion into the common MNI (Montreal Neurological Institute) reference space permitted simple, voxel-wise, algebraic comparisons to be made. Results: Even if in the scanner all participants were lying on their back and were facing upwards, analysis of perspective showed that half of the participants had the impression to be looking down at the virtual human body below them, despite any cues about their body position (Down-group). The other participants had the impression to be looking up at the virtual body above them (Up-group). Analysis of Q3 ("How strong was the feeling that the body you saw was you?") indicated stronger self-identification with the virtual body during the synchronous stroking. RTs in the MBD task confirmed these subjective data (significant 3-way interaction between perspective, object and stroking). fMRI results showed eight cortical regions where the BOLD signal was significantly different during at least one of the conditions resulting from the combination of Object and Stroking, relative to baseline: right and left temporo-parietal junction, right EBA, left middle occipito-temporal gyrus, left postcentral gyrus, right medial parietal lobe, bilateral medial occipital lobe (Fig 1). The activation patterns in right and left temporo-parietal junction and right EBA reflected changes in self-location and perspective as revealed by statistical analysis that was performed on the percentage of BOLD change with respect to the baseline. Statistical lesion overlap comparison (using nonparametric voxel based lesion symptom mapping) with respect to the control group revealed the right temporo-parietal junction, centered at the angular gyrus (Talairach coordinates x = 54, y =-52, z = 26; p>0.05, FDR corrected). Conclusions: The present questionnaire and behavioural results show that - despite the noisy and constraining MR environment) our participants had predictable changes in self-location, self-identification, and first-person perspective when robotic tactile stroking was applied synchronously with the robotic visual stroking. fMRI data in healthy participants and lesion data in patients with abnormal self-location and first-person perspective jointly revealed that the temporo-parietal cortex especially in the right hemisphere encodes these conscious experiences. We argue that temporo-parietal activity reflects the experience of the conscious "I" as embodied and localized within bodily space.
Resumo:
The goal of this study was to investigate the effect of sodium intake on renal tissue oxygenation in humans. To this purpose, we measured renal hemodynamics, renal sodium handling, and renal oxygenation in normotensive (NT) and hypertensive (HT) subjects after 1 week of a high-sodium and 1 week of a low-sodium diet. Renal oxygenation was measured using blood oxygen level-dependent magnetic resonance. Tissue oxygenation was determined by the measurement of R2* maps on 4 coronal slices covering both kidneys. The mean R2* values in the medulla and cortex were calculated, with a low R2* indicating a high tissue oxygenation. Ten male NT (mean age: 26.5+/-7.4 years) and 8 matched HT subjects (mean age: 28.8+/-5.7 years) were studied. Cortical R2* was not different under the 2 conditions of salt intake. Medullary R2* was significantly lower under low sodium than high sodium in both NT and HT subjects (28.1+/-0.8 versus 31.3+/-0.6 s(-1); P<0.05 in NT; and 27.9+/-1.5 versus 30.3+/-0.8 s(-1); P<0.05, in HT), indicating higher medullary oxygenation under low-sodium conditions. In NT subjects, medullary oxygenation was positively correlated with proximal reabsorption of sodium and negatively with absolute distal sodium reabsorption, but not with renal plasma flow. In HT subjects, medullary oxygenation correlated with the 24-hour sodium excretion but not with proximal or with the distal handling of sodium. These data demonstrate that dietary sodium intake influences renal tissue oxygenation, low sodium intake leading to an increased renal medullary oxygenation both in normotensive and young hypertensive subjects.
Resumo:
Cancer is a major health issue that absorbs the attention of a large part of the biomedical research. Intercalating agents bind to DNA molecules and can inhibit their synthesis and transcription; thus, they are increasingly used as drugs to fight cancer. In this work, we show how atomic force microscopy in liquid can characterize, through time-lapse imaging, the dynamical influence of intercalating agents on the supercoiling of DNA, improving our understanding of the drug's effect.
Resumo:
Gas-filled microbubbles (MB) are a very promising alternative to the currently evaluated lipid- or polymer-based particulate Ag delivery systems. We recently demonstrated the ability of MB to deliver associated Ag to DC, to activate them and thereby induce both humoral and cellular immune responses. We now extended the characterization of MB as antigen-delivery system by appraising the efficiency of MB-associated ovalbumin (OVA-MB) at protecting mice against pathogen infection. Ultrasound-mediated imaging demonstrated that the administration of OVA via MB generates a depot at the injection site that lasts for several hours. We found that OVA-MB injected subcutaneously is far more effective at inducing specific Ab and T cell immunity than immunization with free OVA. Moreover, a covalent link between MB and OVA causes a stronger bias towards a Th1-type of immune response than adsorption of the Ag or its covalent link to liposomes of the same lipid composition. Finally, vaccination of mice with OVA-MB partially protects against a systemic infection with OVA-expressing Listeria monocytogenes. The vaccine induces specific effector CD8 T cell responses capable of decreasing more than 100 fold the bacterial load. MB thus represent a potent Ag delivery system for vaccination against intracellular infectious agents.