159 resultados para sciatic neuropathy
Resumo:
Improvement of nerve regeneration and functional recovery following nerve injury is a challenging problem in clinical research. We have already shown that following rat sciatic nerve transection, the local administration of triiodothyronine (T3) significantly increased the number and the myelination of regenerated axons. Functional recovery is a sum of the number of regenerated axons and reinnervation of denervated peripheral targets. In the present study, we investigated whether the increased number of regenerated axons by T3-treatment is linked to improved reinnervation of hind limb muscles. After transection of rat sciatic nerves, silicone or biodegradable nerve guides were implanted and filled with either T3 or phosphate buffer solution (PBS). Neuromuscular junctions (NMJs) were analyzed on gastrocnemius and plantar muscle sections stained with rhodamine alpha-bungarotoxin and neurofilament antibody. Four weeks after surgery, most end-plates (EPs) of operated limbs were still denervated and no effect of T3 on muscle reinnervation was detected at this stage of nerve repair. In contrast, after 14 weeks of nerve regeneration, T3 clearly enhanced the reinnervation of gastrocnemius and plantar EPs, demonstrated by significantly higher recovery of size and shape complexity of reinnervated EPs and also by increased acetylcholine receptor (AChRs) density on post synaptic membranes compared to PBS-treated EPs. The stimulating effect of T3 on EP reinnervation is confirmed by a higher index of compound muscle action potentials recorded in gastrocnemius muscles. In conclusion, our results provide for the first time strong evidence that T3 enhances the restoration of NMJ structure and improves synaptic transmission.
Resumo:
Diabetes mellitus (DM) is a major cause of peripheral neuropathy. More than 220 million people worldwide suffer from type 2 DM, which will, in approximately half of them, lead to the development of diabetic peripheral neuropathy. While of significant medical importance, the pathophysiological changes present in DPN are still poorly understood. To get more insight into DPN associated with type 2 DM, we decided to use the rodent model of this form of diabetes, the db/db mice. During the in-vivo conduction velocity studies on these animals, we observed the presence of multiple spiking followed by a single stimulation. This prompted us to evaluate the excitability properties of db/db peripheral nerves. Ex-vivo electrophysiological evaluation revealed a significant increase in the excitability of db/db sciatic nerves. While the shape and kinetics of the compound action potential of db/db nerves were the same as for control nerves, we observed an increase in the after-hyperpolarization phase (AHP) under diabetic conditions. Using pharmacological inhibitors we demonstrated that both the peripheral nerve hyperexcitability (PNH) and the increased AHP were mostly mediated by the decreased activity of Kv1-channels. Importantly, we corroborated these data at the molecular level. We observed a strong reduction of Kv1.2 channel presence in the juxtaparanodal regions of teased fibers in db/db mice as compared to control mice. Quantification of the amount of both Kv1.2 isoforms in DRG neurons and in the endoneurial compartment of peripheral nerve by Western blotting revealed that less mature Kv1.2 was integrated into the axonal membranes at the juxtaparanodes. Our observation that peripheral nerve hyperexcitability present in db/db mice is at least in part a consequence of changes in potassium channel distribution suggests that the same mechanism also mediates PNH in diabetic patients. ∗Current address: Department of Physiology, UCSF, San Francisco, CA, USA.
Resumo:
Both the central and the peripheral nervous systems are prone to multiple age-dependent neurological deficits, often attributed to still unknown alterations in the function of myelinating glia. To uncover the biological processes affected in glial cells by aging, we analyzed gene expression of the Schwann cell-rich mouse sciatic nerve at 17 time points throughout life, from day of birth until senescence. By combining these data with the gene expression data of myelin mouse mutants carrying deletions of either Pmp22, SCAP, or Lpin1, we found that the majority of age-related transcripts were also affected in myelin mutants (54.4%) and were regulated during PNS development (59.5%), indicating a high level of overlap in implicated molecular pathways. The expression profiles in aging copied the direction of transcriptional changes observed in neuropathy models; however, they had the opposite direction when compared with PNS development. The most significantly altered biological processes in aging involved the inflammatory/immune response and lipid metabolism. Interestingly, both these pathways were comparably changed in the aging optic nerve, suggesting that similar biological processes are affected in aging of glia-rich parts of the central and peripheral nervous systems. Our comprehensive comparison of gene expression in three distinct biological conditions including development, aging, and myelin disease thus revealed a previously unanticipated relationship among themselves and identified lipid metabolism and inflammatory/immune response pathways as potential therapeutical targets to prevent or delay so far incurable age-related and inherited forms of neuropathies.
Resumo:
BACKGROUND: Chronic neuropathy after hernia repair is a neglected problem as very few patients are referred for surgical treatment. The aim of the present study was to assess the outcome of standardized surgical revision for neuropathic pain after hernia repair. METHODS: In a prospective cohort study we evaluated all patients admitted to our tertiary referral center for surgical treatment of persistent neuropathic pain after primary herniorrhaphy between 2001 and 2006. Diagnosis of neuropathic pain was based on clinical findings and a positive Tinel's sign. Postoperative pain was evaluated by a visual analogue scale (VAS) and a pain questionnaire up to 12 months after revision surgery. RESULTS: Forty-three consecutive patients (39 male, median age 35 years) underwent surgical revision, mesh removal, and radical neurectomy. The median operative time was 58 min (range: 45-95 min). Histological examination revealed nerve entrapment, complete transection, or traumatic neuroma in all patients. The ilioinguinal nerve was affected in 35 patients (81%); the iliohypogastric nerve, in 10 patients (23%). Overall pain (median VAS) decreased permanently after surgery within a follow-up period of 12 months (preoperative 74 [range: 53-87] months versus 0 [range: 0-34] months; p<0.0001). CONCLUSIONS: The results of this cohort study suggest that surgical mesh removal with ilioinguinal and iliohypogastric neurectomy is a successful treatment in patients with neuropathic pain after hernia repair.
Resumo:
Using autoradiographic techniques carried out under precise conditions we previously demonstrated that both sensory neurons and peripheral glial cells in dorsal root ganglia (DRG) or sciatic nerve, possess specific [125I]-labeled T3 binding sites. Thyroid hormone receptors (TR) include several isoforms (TR alpha(1), TR alpha(2), TR beta(1), TR beta(2...)) The present study demonstrates that while sensory neurons and peripheral glial cells both possess functional TR, they express a differential expression of TR isoforms. Using a panel of antisera to specific for the TR alpha-common (alpha(1) and alpha(2)), TR alpha-1 or TR beta-1 isoforms, we detected TRs isoform localization at the cellular level during DRG and sciatic nerve development and regeneration. Immunohistochemical analysis revealed that during embryonic life, sensory neurons express TR alpha-common and TR beta-1 rather than TR alpha-1. The number of TR alpha-common and TR beta-1 positive neurons as well as the intensity of labeling increased during the first two postnatal weeks and remained more or less stable in adult life. TR alpha-1 immunoreactivity, which was undetectable in embryonic sensory neurons, became discreetly visible in neurons after birth. In developing DRG and sciatic nerves, Schwann cells exhibited TR alpha-common and TR alpha-1 rather than TR beta-1 immunolabeling. The appearance of TR alpha-common and alpha-1 isoform immunoreactivity in the sciatic nerve was restricted to a short period ranging from E17 up to two postnatal weeks. By comparing TR alpha-common and TR alpha-1 immunostaining we can deduce that Schwann cells primarily express TR alpha-1. Afterwards, in adult rat sciatic nerve TR alpha isoforms was no more detected. However transection of sciatic nerve caused a reexpression of TR alpha isoforms in degenerating nerve. The prevalence of TR alpha in Schwann cells in vivo was correlated with in vitro results. The differential expression of TR alpha and beta by sensory neurons and Schwann cells indicates that the feedback regulation of circulating thyroid hormone could occur by binding to either the alpha or beta TR isoforms. Moreover, the presence of multiple receptor isoforms in developing sensory neurons suggests that thyroid hormone uses multiple signaling pathways to regulate DRG and sciatic nerve development.
Resumo:
BACKGROUND: There have been anecdotal reports of anterior ischemic optic neuropathy (AION) occurring in eyes with optic disc drusen (ODD), but the clinical features of this condition have not been well characterized. OBJECTIVES: To better describe the clinical features of AION associated with ODD and to compare the clinical features of this condition with those of "garden variety" nonarteritic AION. METHODS: We reviewed the medical records of 20 patients who experienced an episode of AION in an eye with ODD. In 4 patients, both eyes were affected; thus, 24 eyes were studied. The diagnosis of ODD was made by ophthalmoscopic identification, orbital ultrasonography, or computed tomographic scanning. We recorded age, sex, vascular risk factors, symptoms, visual acuity, visual fields, and results of the follow-up examination in all patients. These findings were compared with data from previously reported series of patients with nonarteritic AION. RESULTS: Our 20 patients included 14 men and 6 women (age range, 18-69 years; mean, 49.4 years). Vascular risk factors were identified in 10 patients (50%). Three patients reported episodes of transient visual loss before their fixed deficit. The visual acuity at the initial examination was 20/60 or better in 15 (62%) of the 24 eyes; 8 had a visual acuity of 20/20. The predominant pattern of visual field loss was an altitudinal or arcuate defect in 19 (79%) and a centrocecal scotoma in 5 (21%) of the 24 eyes. There was subjective worsening of vision before the initial neuro-ophthalmic examination in 11 eyes (46%) and objective documentation of progression in 7 eyes (29%). The final visual acuity was 20/40 or better in 13 (62%) of 21 eyes and 20/200 or worse in 3 (14%) of 21 eyes. CONCLUSIONS: Our patients were strikingly similar to those with nonarteritic AION unassociated with drusen in regard to prevalence of vascular risk factors, pattern of visual field loss, and occurrence of a subsequent similar event in the fellow eye. In contrast, however, patients with ODD-AION were younger than those with nonarteritic AION, were more likely to report preceding episodes of transient visual obscuration, and enjoyed a more favorable visual outcome.
Resumo:
Improvement of nerve regeneration and functional recovery following nerve injury is a challenging problem in clinical research. We have already shown that following rat sciatic nerve transection, the local administration of triiodothyronine (T3) significantly increased the number and the myelination of regenerated axons. Functional recovery is a sum of the number of regenerated axons and reinnervation of denervated peripheral targets. In the present study, we investigated whether the increased number of regenerated axons by T3-treatment is linked to improved reinnervation of hind limb muscles. After transection of rat sciatic nerves, silicone or biodegradable nerve guides were implanted and filled with either T3 or phosphate buffer solution (PBS). Neuromuscular junctions (NMJs) were analyzed on gastrocnemius and plantar muscle sections stained with rhodamine alpha-bungarotoxin and neurofilament antibody. Four weeks after surgery, most end-plates (EPs) of operated limbs were still denervated and no effect of T3 on muscle reinnervation was detected at this stage of nerve repair. In contrast, after 14 weeks of nerve regeneration, T3 clearly enhanced the reinnervation of gastrocnemius and plantar EPs, demonstrated by significantly higher recovery of size and shape complexity of reinnervated EPs and also by increased acetylcholine receptor (AChRs) density on post synaptic membranes compared to PBS-treated EPs. The stimulating effect of T3 on EP reinnervation is confirmed by a higher index of compound muscle action potentials recorded in gastrocnemius muscles. In conclusion, our results provide for the first time strong evidence that T3 enhances the restoration of NMJ structure and improves synaptic transmission.
Resumo:
OBJECTIVE To better define the concordance of visual loss in patients with nonarteritic anterior ischemic optic neuropathy (NAION). METHODS The medical records of 86 patients with bilateral sequential NAION were reviewed retrospectively, and visual function was assessed using visual acuity, Goldmann visual fields, color vision, and relative afferent papillary defect. A quantitative total visual field score and score per quadrant were analyzed for each eye using the numerical Goldmann visual field scoring method. RESULTS Outcome measures were visual acuity, visual field, color vision, and relative afferent papillary defect. A statistically significant correlation was found between fellow eyes for multiple parameters, including logMAR visual acuity (P = .01), global visual field (P < .001), superior visual field (P < .001), and inferior visual field (P < .001). The mean deviation of total (P < .001) and pattern (P < .001) deviation analyses was significantly less between fellow eyes than between first and second eyes of different patients. CONCLUSIONS Visual function between fellow eyes showed a fair to moderate correlation that was statistically significant. The pattern of vision loss was also more similar in fellow eyes than between eyes of different patients. These results may help allow better prediction of visual outcome for the second eye in patients with NAION.
Resumo:
BACKGROUND: Radiation optic neuropathy (RON) is a rare, unpredictable, late complication of radiotherapy secondary to obliterative endarteritis. Tumor recurrence has to be ruled out by a clinical and neuroradiological examination. METHODS: Five patients with RON were investigated by magnetic resonance imaging (MRI) during 1992. RESULTS: Radiation-induced lesions of the intracranial visual pathways were easily visible on MRI. Without Gadolinium, a sectorial swelling was detectable, which markedly enhanced with Gadolinium. Intracranial optic nerve was affected in 5/5 cases, optic chiasm in 3/5 cases, and optic tract in 2/5 cases. CONCLUSIONS: MRI is the examination of choice when RON is suspected: it will easily delineate the extent of the lesion, and compression/infiltration by a recurrent tumor will be formally ruled out. A segmental swelling of visual pathway with marked Gadolinium enhancement on MRI is highly suggestive of radionecrosis.
Resumo:
Painful total hip replacement remains a challenging problem because of the large amount of possible diagnoses. We report about a 64-year-old female patient who was misdiagnosed during 4 years as psychiatric. She suffered of excruciating left retrotrochanteric pain after the implantation of a cementless total hip replacement and revision because of recurrent hip dislocations. Walking was limited to short distances using two crutches. The work-up at this time included the usual diagnoses and remained unsuccessful. No loosening, infection or malposition of the prosthesis could be found, and she had no neurologic deficits in her operated leg. An MRI was obtained to visualize the retrotrochanteric soft tissues and showed a tight scar surrounding the sciatic nerve, which was also compressed by an adjacent lipoma. Therefore, she was reoperated on to remove the lipoma and the scar tissue around the sciatic nerve. To decrease the risk of recurrent scarring around the sciatic nerve, an adhesion barrier was applied before closure. One year after the operation, the patient has no neurologic deficit, no more pain and is able to walk unlimited distances without crutches. Scar tissue around the sciatic nerve is frequently observed during revision surgery. However, we feel that sciatic nerve entrapment by scar tissue should be a part of the differential diagnosis of painful THR. MRI may be a useful tool to achieve this diagnosis.
Resumo:
Neuropathic pain is a common form of chronic pain, and is unsuccessfully alleviated by usual medications. Mounting evidence strongly point at non-neuronal glial cells in the spinal cord as key actors behind the persistence of pain. In particular, a change in the astrocytic capacity to regulate extracellular concentrations of neurotransmitters might account for the strengthened spinal nociceptive neurotransmission. Therefore, we investigated whether spinal expressions of GABA (GAT) and glutamate (EAAT) transporters were affected in the spared nerve injury (SNI) rat model of neuropathic pain. SNI was induced in male Sprague-Dawley rats by a unilateral section of tibial and common peroneal branches of the sciatic nerve, leaving the sural branch untouched. Western-blot analysis was performed to study the expression of GAT-1 and GAT-3 as well as EAAT-1 and EAAT-2, the main astrocytic GABA and glutamate transporters respectively. Seven days post-surgery, a significant increase in GAT-1, GAT-3 and EAAT-1 expressions is detected in both ipsilateral and contralateral sides of lumbar spinal cord in comparison to sham animals. No change in EAAT-2 signal could be detected. Furthermore, the astrocytic reaction parallels the glutamate and GABA transporters changes as we found an increased GFAP expression compared to the sham condition, in both spinal sides. Together, our results indicate that modifications in GABA and glutamate transport may occur along with SNI-associated painful neuropathy and identify spinal neurotransmitter reuptake machinery as a putative pharmacological target in neuropathic pain.
Resumo:
It has been already demonstrated that thyroid hormone (T3) is one of the most important stimulating factors in peripheral nerve regeneration. We have recently shown that local administration of T3 in silicon tubes at the level of the transected rat sciatic nerve enhanced axonal regeneration and improved functional recovery. Silicon, however, cannot be used in humans because it causes a chronic inflammatory reaction. Therefore, in order to provide future clinical applications of thyroid hormone in human peripheral nerve lesions, we carried out comparative studies on the regeneration of transected rat sciatic nerve bridged either by biodegradable P(DLLA-(-CL) or by silicon nerve guides, both guides filled with either T3 or phosphate buffer. Our macroscopic observation revealed that 85% of the biodegradable guides allowed the expected regeneration of the transected sciatic nerve. The morphological, morphometric and electrophysiological analysis showed that T3 in biodegradable guides induces a significant increase in the number of myelinated regenerated axons (6862 +/- 1831 in control vs. 11799 +/- 1163 in T3-treated). Also, T3 skewed the diameter of myelinated axons toward larger values than in controls. Moreover, T3 increases the compound muscle action potential amplitude of the flexor and extensor muscles of the treated rats. This T3 stimulation in biodegradable guides was equally well to that obtained by using silicone guides. In conclusion, the administration of T3 in biodegradable guides significantly improves sciatic nerve regeneration, confirming the feasibility of our technique to provide a serious step towards future clinical application of T3 in human peripheral nerve injuries.
Resumo:
The Lpin1 gene encodes the phosphatidate phosphatase (PAP1) enzyme Lipin 1, which plays a critical role in lipid metabolism. In this study we describe the identification and characterization of a rat model with a mutated Lpin1 gene (Lpin1(1Hubr)), generated by N-ethyl-N-nitrosourea mutagenesis. Lpin1(1Hubr) rats are characterized by hindlimb paralysis and mild lipodystrophy that are detectable from the second postnatal week. Sequencing of Lpin1 identified a point mutation in the 5'-end splice site of intron 18 resulting in mis-splicing, a reading frameshift, and a premature stop codon. As this mutation does not induce nonsense-mediated decay, it allows the production of a truncated Lipin 1 protein lacking PAP1 activity. Lpin1(1Hubr) rats developed hypomyelination and mild lipodystrophy rather than the pronounced demyelination and adipocyte defects characteristic of Lpin1(fld/fld) mice, which carry a null allele for Lpin1. Furthermore, biochemical, histological, and molecular analyses revealed that these lesions improve in older Lpin1(1Hubr) rats as compared with young Lpin1(1Hubr) rats and Lpin1(fld/fld) mice. We observed activation of compensatory biochemical pathways substituting for missing PAP1 activity that, in combination with a possible non-enzymatic Lipin 1 function residing outside of its PAP1 domain, may contribute to the less severe phenotypes observed in Lpin1(1Hubr) rats as compared with Lpin1(fld/fld) mice. Although we are cautious in making a direct parallel between the presented rodent model and human disease, our data may provide new insight into the pathogenicity of recently identified human LPIN1 mutations.