23 resultados para robotics
Resumo:
Laparoscopic surgery has become a standard approach for many interventions, including oncologic surgery. Laparoscopic instruments have been developed to allow advanced surgical procedure. Imaging and computer assistance in virtual reality or robotic procedure will certainly improve access to this surgery.
Resumo:
Chronic atrial fibrillation affects millions of people worldwide. Its surgical treatment often fails to restore the transport function of the atrium. This study first introduces the concept of an atrial assist device (AAD) to restore the pump function of the atrium. The AAD is developed to be totally implantable in the human body with a transcutaneous energy transfer system to recharge the implanted battery. The ADD consists of a motorless pump based on artificial muscle technology, positioned on the external surface of the atrium to compress it and restore its muscular activity. A bench model reproduces the function of a fibrillating atrium to assess the circulatory support that this pump can provide. Atripump (Nanopowers SA, Switzerland) is a dome-shaped silicone-coated nitinol actuator 5 mm high, sutured on the external surface of the atrium. A pacemaker-like control unit drives the actuator that compresses the atrium, providing the mechanical support to the blood circulation. Electrical characteristics: the system is composed of one actuator that needs a minimal tension of 15 V and has a maximum current of 1.5 A with a 50% duty cycle. The implantable rechargeable battery is made of a cell having the following specifications: nominal tension of a cell: 4.1 V, tension after 90% of discharge: 3.5 V, nominal capacity of a cell: 163 mA h. The bench model consists of an open circuit made of latex bladder 60 mm in diameter filled with water. The bladder is connected to a vertically positioned tube that is filled to different levels, reproducing changes in cardiac preload. The Atripump is placed on the outer surface of the bladder. Pressure, volume and temperature changes were recorded. The contraction rate was 1 Hz with a power supply of 12 V, 400 mA for 200 ms. Preload ranged from 15 to 21 cm H(2)O. Maximal silicone membrane temperature was 55 degrees C and maximal temperature of the liquid environment was 35 degrees C. The pump produced a maximal work of 16 x 10(-3) J. Maximal volume pumped was 492 ml min(-1). This artificial muscle pump is compact, follows the Starling law and reproduces the hemodynamic performances of a normal atrium. It could represent a new tool to restore the atrial kick in persistent atrial fibrillation.
Resumo:
Since 2000 and the commercialisation of the Da Vinci robotic system, indications for robotic surgery are rapidly increasing. Recent publications proved superior functional outcomes with equal oncologic safety in comparison to conventional open surgery. Its field of application may extend to the nasopharynx and skull base surgery. The preliminary results are encouraging. This article reviews the current literature on the role of transoral robotic surgery in head and neck cancer.
Resumo:
"MotionMaker (TM)" is a stationary programmable test and training system for the lower limbs developed at the 'Ecole Polytechnique Federale de Lausanne' with the 'Fondation Suisse pour les Cybertheses'.. The system is composed of two robotic orthoses comprising motors and sensors, and a control unit managing the trans-cutaneous electrical muscle stimulation with real-time regulation. The control of the Functional Electrical Stimulation (FES) induced muscle force necessary to mimic natural exercise is ensured by the control unit which receives a continuous input from the position and force sensors mounted on the robot. First results with control subjects showed the feasibility of creating movements by such closed-loop controlled FES induced muscle contractions. To make exercising with the MotionMaker (TM) safe for clinical trials with Spinal Cord Injured (SCI) volunteers, several original safety features have been introduced. The MotionMaker (TM) is able to identify and manage the occurrence of spasms. Fatigue can also be detected and overfatigue during exercise prevented.
Resumo:
The effect of motor training using closed loop controlled Functional Electrical Stimulation (FES) on motor performance was studied in 5 spinal cord injured (SCI) volunteers. The subjects trained 2 to 3 times a week during 2 months on a newly developed rehabilitation robot (MotionMaker?). The FES induced muscle force could be adequately adjusted throughout the programmed exercises by the way of a closed loop control of the stimulation currents. The software of the MotionMaker? allowed spasms to be detected accurately and managed in a way to prevent any harm to the SCI persons. Subjects with incomplete SCI reported an increased proprioceptive awareness for motion and were able to achieve a better voluntary activation of their leg muscles during controlled FES. At the end of the training, the voluntary force of the 4 incomplete SCI patients was found increased by 388% on their most affected leg and by 193% on the other leg. Active mobilisation with controlled FES seems to be effective in improving motor function in SCI persons by increasing the sensory input to neuronal circuits involved in motor control as well as by increasing muscle strength.
Resumo:
Le traitement de radiochirurgie par Gamma Knife (GK) est utilisé de plus en plus souvent comme une alternative à la microchirurgie conventionnelle pour le traitement des pathologies neurochirurgicales intracrâniennes. Il s'agit d'irradier en dose unique et à haute énergie, en condition stéréotaxique et à l'aide d'une imagerie multimodale (imagerie par résonance magnétique [IRM], tomodensitométrie et éventuellement artériographie). Le GK a été inventé par le neurochirurgien suédois Lars Leksell, qui a réalisé le premier ciblage du nerf trijumeau en 1951, sur la base d'une radiographie standard. Depuis, les progrès de l'informatique et de la robotique ont permis d'améliorer la technique de radiochirurgie qui s'effectue actuellement soit par accélérateur linéaire de particules monté sur un bras robotisé (Novalis®, Cyberknife®), soit par collimation de près de 192 sources fixes (GK). La principale indication radiochirurgicale dans le traitement de la douleur est la névralgie du nerf trijumeau. Les autres indications, plus rares, sont la névralgie du nerf glossopharyngien, l'algie vasculaire de la face, ainsi qu'un traitement de la douleur d'origine cancéreuse par hypophysiolyse. Gamma Knife surgery (GKS) is widely used as an alternative to open microsurgical procedures as noninvasive treatment of many intracranial conditions. It consists of delivering a single dose of high energy in stereotactic conditions, and with the help of a multimodal imaging (e.g., magnetic resonance imaging [MRI], computer tomography, and eventually angiography). The Gamma Knife (GK) was invented by the Swedish neurosurgeon Lars Leksell who was the first to treat a trigeminal neuralgia sufferer in 1951 using an orthogonal X-ray tube. Since then, the progresses made both in the field of informatics and robotics have allowed to improve the radiosurgical technique, which is currently performed either by a linear accelerator of particles mounted on a robotized arm (Novalis®, Cyberknife®), or by collimation of 192 fixed Co-60 sources (GK). The main indication of GKS in the treatment of pain is trigeminal neuralgia. The other indications, less frequent, are: glossopharyngeal neuralgia, cluster headache, and hypophysiolyse for cancer pain.
Resumo:
Modelling the shoulder's musculature is challenging given its mechanical and geometric complexity. The use of the ideal fibre model to represent a muscle's line of action cannot always faithfully represent the mechanical effect of each muscle, leading to considerable differences between model-estimated and in vivo measured muscle activity. While the musculo-tendon force coordination problem has been extensively analysed in terms of the cost function, only few works have investigated the existence and sensitivity of solutions to fibre topology. The goal of this paper is to present an analysis of the solution set using the concepts of torque-feasible space (TFS) and wrench-feasible space (WFS) from cable-driven robotics. A shoulder model is presented and a simple musculo-tendon force coordination problem is defined. The ideal fibre model for representing muscles is reviewed and the TFS and WFS are defined, leading to the necessary and sufficient conditions for the existence of a solution. The shoulder model's TFS is analysed to explain the lack of anterior deltoid (DLTa) activity. Based on the analysis, a modification of the model's muscle fibre geometry is proposed. The performance with and without the modification is assessed by solving the musculo-tendon force coordination problem for quasi-static abduction in the scapular plane. After the proposed modification, the DLTa reaches 20% of activation.