81 resultados para retinoic acids


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Site-directed mutagenesis and molecular dynamics analysis of the 3-D model of the alpha1B-adrenergic receptor (AR) were combined to identify the molecular determinants of the receptor involved in catecholamine binding. Our results indicate that the three conserved serines in the fifth transmembrane domain (TMD) of the alpha1B-AR play a distinct role in catecholamine binding versus receptor activation. In addition to the amino acids D125 in TMDIII and S207 in TMDV directly involved in ligand binding, our findings identify a large number of polar residues playing an important role in the activation process of the alpha1B-AR thus providing new insights into the structure/function relationship of G protein-coupled receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Specific metabolic pathways are activated by different nutrients to adapt the organism to available resources. Although essential, these mechanisms are incompletely defined. Here, we report that medium-chain fatty acids contained in coconut oil, a major source of dietary fat, induce the liver ω-oxidation genes Cyp4a10 and Cyp4a14 to increase the production of dicarboxylic fatty acids. Furthermore, these activate all ω- and β-oxidation pathways through peroxisome proliferator activated receptor (PPAR) α and PPARγ, an activation loop normally kept under control by dicarboxylic fatty acid degradation by the peroxisomal enzyme L-PBE. Indeed, L-pbe(-/-) mice fed coconut oil overaccumulate dicarboxylic fatty acids, which activate all fatty acid oxidation pathways and lead to liver inflammation, fibrosis, and death. Thus, the correct homeostasis of dicarboxylic fatty acids is a means to regulate the efficient utilization of ingested medium-chain fatty acids, and its deregulation exemplifies the intricate relationship between impaired metabolism and inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In higher plants such as Arabidopsis thaliana, omega-3 trienoic fatty acids (TFAs), represented mainly by alpha-linolenic acid, serve as precursors of jasmonic acid (JA), a potent lipid signal molecule essential for defense. The JA-independent roles of TFAs were investigated by comparing the TFA- and JA-deficient fatty acid desaturase triple mutant (fad3-2 fad7-2 fad8 (fad3 fad7 fad8)) with the aos (allene oxide synthase) mutant that contains TFAs but is JA-deficient. When challenged with the fungus Botrytis, resistance of the fad3 fad7 fad8 mutant was reduced when compared with the aos mutant, suggesting that TFAs play a role in cell survival independently of being the precursors of JA. An independent genetic approach using the lesion mimic mutant accelerated cell death2 (acd2-2) confirmed the importance of TFAs in containing lesion spread, which was increased in the lines in which the fad3 fad7 fad8 and acd2-2 mutations were combined when compared with the aos acd2-2 lines. Malondialdehyde, found to result from oxidative TFA fragmentation during lesion formation, was measured by gas chromatography-mass spectrometry. Its levels correlated with the survival of the tissue. Furthermore, plants lacking TFAs overproduced salicylic acid (SA), hydrogen peroxide, and transcripts encoding several SA-regulated and SA biosynthetic proteins. The data suggest a physiological role for TFAs as sinks for reactive oxygen species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Improving the binding affinity and/or stability of peptide ligands often requires testing of large numbers of variants to identify beneficial mutations. Herein we propose a type of mutation that promises a high success rate. In a bicyclic peptide inhibitor of the cancer-related protease urokinase-type plasminogen activator (uPA), we observed a glycine residue that has a positive ϕ dihedral angle when bound to the target. We hypothesized that replacing it with a D-amino acid, which favors positive ϕ angles, could enhance the binding affinity and/or proteolytic resistance. Mutation of this specific glycine to D-serine in the bicyclic peptide indeed improved inhibitory activity (1.75-fold) and stability (fourfold). X-ray-structure analysis of the inhibitors in complex with uPA showed that the peptide backbone conformation was conserved. Analysis of known cyclic peptide ligands showed that glycine is one of the most frequent amino acids, and that glycines with positive ϕ angles are found in many protein-bound peptides. These results suggest that the glycine-to-D-amino acid mutagenesis strategy could be broadly applied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A gene, named AtECH2, has been identified in Arabidopsis thaliana to encode a monofunctional peroxisomal enoyl-CoA hydratase 2. Homologues of AtECH2 are present in several angiosperms belonging to the Monocotyledon and Dicotyledon classes, as well as in a gymnosperm. In vitro enzyme assays demonstrated that AtECH2 catalyzed the reversible conversion of 2E-enoyl-CoA to 3R-hydroxyacyl-CoA. AtECH2 was also demonstrated to have enoyl-CoA hydratase 2 activity in an in vivo assay relying on the synthesis of polyhydroxyalkanoate from the polymerization of 3R-hydroxyacyl-CoA in the peroxisomes of Saccharomyces cerevisiae. AtECH2 contained a peroxisome targeting signal at the C-terminal end, was addressed to the peroxisome in S. cerevisiae, and a fusion protein between AtECH2 and a fluorescent protein was targeted to peroxisomes in onion cells. AtECH2 gene expression was strongest in tissues with high beta-oxidation activity, such as germinating seedlings and senescing leaves. The contribution of AtECH2 to the degradation of unsaturated fatty acids was assessed by analyzing the carbon flux through the beta-oxidation cycle in plants that synthesize peroxisomal polyhydroxyalkanoate and that were over- or underexpressing the AtECH2 gene. These studies revealed that AtECH2 participates in vivo to the conversion of the intermediate 3R-hydroxyacyl-CoA, generated by the metabolism of fatty acids with a cis (Z)-unsaturated bond on an even-numbered carbon, to the 2E-enoyl-CoA for further degradation through the core beta-oxidation cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptor (PPARs) are members of the nuclear receptor superfamily. For transcriptional activation of their target genes, PPARs heterodimerize with the retinoid-X receptor (RXR). The convergence of the PPAR and RXR signaling pathways has been shown to have an important function in lipid metabolism. The promoter of the gene encoding the acyl-coenzyme-A oxidase (ACO), the rate-limiting enzyme in peroxisomal beta-oxidation of fatty acids, is a target site of PPAR action. In this study, we examined the role and the contribution of both cis-and trans-acting factors in the transcriptional regulation of this gene using transient transfections in insect cells. We identified several functional cis-acting elements present in the promoter of the ACO gene and established that PPAR-dependent as well as PPAR-independent mechanisms can activate the ACO promoter in these cells. We show that the PPAR/RXR heterodimer exerts its effect through two response elements within the ACO promoter, in synergy with the transcription factor Sp1 via five Sp1-binding sites. Furthermore, this functional interaction also occurs when Sp1 is co-expressed with PPAR or RXR alone, indicating that activation can occur independently of PPAR/RXR heterodimers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To provide further insights into ruminant lipid digestion and metabolism, and into cis9, trans-11 18:2 synthesis, 12 growing Engadine lambs grazing either mountain pasture (2,250 m above sea level; n = 6) or lowland pasture (400 m above sea level; n = 6) were studied. Both pastures consisted exclusively of C-3 plants. Before the experiment, all animals grazed a common pasture for 6 wk. Grasses and perirenal adipose tissues of the sheep were analyzed for fatty acids by gas chromatography. Stable C-isotope ratios (delta C-13 values in % vs. the Vienna Pee Dee Belemnite standard) were determined in the composite samples by elemental analysis-isotope ratio mass spectrometry. The delta C-13 of the individual fatty acids were measured by gas chromatography-combustion-isotope ratio mass spectrometry. The delta C-13 value of the entire mountain pasture grass was -27.5% (SD 0.31), whereas that of the lowland pasture grass was -30.0% (SD 0.07). This difference was reflected in the perirenal adipose tissues of the corresponding sheep (P < 0.05), even though the delta C-13 values were less in the animals than in the grass. The delta C-13 values for cis-9 16:1 and cis-9 18:1 in perirenal fat differed between mountain and lowland lambs (P < 0.05). The 16:0 in the adipose tissue was enriched in C-13 by 5% compared with the dietary 16:0, likely as a result of partly endogenous synthesis. The d13C values of cis-9, trans-11 18:2 (cis-9, trans-11 CLA) in the adipose tissue were smaller than those of its dietary precursors, cis-9, cis-12 18:2 and cis-9, cis-12, cis-15 18:3; conversely, the delta C-13 values of trans-11 18:1 were not, suggesting that large proportions of perirenal cis-9, trans-11 18:2 were of endogenous origin and discrimination against C-13 occurred during Delta(9)-desaturation. The same discrimination was indicated by the isotopic shift between 16:0 and cis-9 16:1 in the mountain grazing group. Furthermore, the delta C-13 values of cis-9, trans-11 18:2 were smaller relative to the precursor fatty acids in the mountain lambs compared with the lowland group. This result suggests a reduced extent of biohydrogenation in lambs grazing on mountain grass in comparison with those grazing on lowland grass. This was supported by the smaller cis-9, trans-11 18:2 concentrations in total fatty acids found in the adipose tissues of the lowland lambs (P < 0.001). The results of this study demonstrate that natural differences between delta C-13 values of swards from different pastures and the adipose tissue fatty acids could be used as tracers in studies of lipid metabolism in ruminants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contraction forces developed by cardiomyocytes are transmitted across the plasma membrane through end-to-end connections between the myocytes, called intercalated disks, which enable the coordinated contraction of heart muscle. A component of the intercalated disk, the adherens junction, consists of the cell adhesion molecule, N-cadherin. Embryos lacking N-cadherin die at mid-gestation from cardiovascular abnormalities. We have evaluated the role of N-cadherin in cardiomyogenesis using N-cadherin-null mouse embryonic stem (ES) cells grown as embryoid bodies (EBs) in vitro. Myofibrillogenesis, the spatial orientation of myofibers, and intercellular contacts including desmosomes were normal in N-cadherin-null ES cell-derived cardiomyocytes. The effect of retinoic acid (RA), a stage and dose-dependent cardiogenic factor, was assessed in differentiating ES cells. all-trans (at) RA increased the number of ES cell-derived cardiomyocytes by approximately 3-fold (at 3 x 10(-9) M) in wt EBs. However, this effect was lost in N-cadherin-null EBs. In the presence of supplemented at-RA, the emergence of spontaneously beating cardiomyocytes appeared to be delayed and slightly less efficient in N-cadherin-null compared with wt and heterozygous EBs (frequencies of EBs with beating activity at 5 days: 54+/-18% vs. 96+/-0.5%, and 93+/-7%, respectively; peak frequencies of EBs with beating activity: 83+/-8% vs. 96+/-0.5% and 100%, respectively). In conclusion, cardiomyoyctes differentiating from N-cadherin-null ES cells in vitro show normal myofibrillogenesis and intercellular contacts, but impaired responses to early cardiogenic effects mediated by at-RA. These results suggest that N-cadherin may be essential for RA-induced cardiomyogenesis in mouse ES cells in vitro.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Delta oscillations, characteristic of the electroencephalogram (EEG) of slow wave sleep, estimate sleep depth and need and are thought to be closely linked to the recovery function of sleep. The cellular mechanisms underlying the generation of delta waves at the cortical and thalamic levels are well documented, but the molecular regulatory mechanisms remain elusive. Here we demonstrate in the mouse that the gene encoding the retinoic acid receptor beta determines the contribution of delta oscillations to the sleep EEG. Thus, retinoic acid signaling, which is involved in the patterning of the brain and dopaminergic pathways, regulates cortical synchrony in the adult.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mouse mammary tumor virus (MMTV) is a retrovirus encoding a superantigen that is recognized in association with major histocompatibility complex class II by the variable region of the beta chain (V(beta)) of the T-cell receptor. The C-terminal 30 to 40 amino acids of the superantigen of different MMTVs display high sequence variability that correlates with the recognition of particular T-cell receptor V(beta) chains. Interestingly, MMTV(SIM) and mtv-8 superantigens are highly homologous but have nonoverlapping T-cell receptor V(beta) specificities. To determine the importance of these few differences for specific V(beta) interaction, we studied superantigen responses in mice to chimeric and mutant MMTV(SIM) and mtv-8 superantigens expressed by recombinant vaccinia viruses. We show that only a few changes (two to six residues) within the C terminus are necessary to modify superantigen recognition by specific V(beta)s. Thus, the introduction of the MMTV(SIM) residues 314-315 into the mtv-8 superantigen greatly decreased its V(beta)12 reactivity without gain of MMTV(SIM)-specific function. The introduction of MMTV(SIM)-specific residues 289 to 295, however, induced a recognition pattern that was a mixture of MMTV(SIM)- and mtv-8-specific V(beta) reactivities: both weak MMTV(SIM)-specific V(beta)4 and full mtv-8-specific V(beta)11 recognition were observed while V(beta)12 interaction was lost. The combination of the two MMTV(SIM)-specific regions in the mtv-8 superantigen established normal MMTV(SIM)-specific V(beta)4 reactivity and completely abolished mtv-8-specific V(beta)5, -11, and -12 interactions. These new functional superantigens with mixed V(beta) recognition patterns allowed us to precisely delineate sites relevant for molecular interactions between the SIM or mtv-8 superantigen and the T-cell receptor V(beta) domain within the 30 C-terminal residues of the viral superantigen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Omega-3 fatty acids (ω-3 FAs) have potential anti-inflammatory activity in a variety of inflammatory human diseases, but the mechanisms remain poorly understood. Here we show that stimulation of macrophages with ω-3 FAs, including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and other family members, abolished NLRP3 inflammasome activation and inhibited subsequent caspase-1 activation and IL-1β secretion. In addition, G protein-coupled receptor 120 (GPR120) and GPR40 and their downstream scaffold protein β-arrestin-2 were shown to be involved in inflammasome inhibition induced by ω-3 FAs. Importantly, ω-3 FAs also prevented NLRP3 inflammasome-dependent inflammation and metabolic disorder in a high-fat-diet-induced type 2 diabetes model. Our results reveal a mechanism through which ω-3 FAs repress inflammation and prevent inflammation-driven diseases and suggest the potential clinical use of ω-3 FAs in gout, autoinflammatory syndromes, or other NLRP3 inflammasome-driven inflammatory diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasmacytoid dendritic cells (pDCs) are specialized sensors of viral nucleic acids that initiate protective immunity through the production of type I interferons (IFNs). Normally, pDCs fail to sense host-derived self-nucleic acids but do so when self-nucleic acids form complexes with endogenous antimicrobial peptides produced in damaged skin. Whereas regulated expression of antimicrobial peptides may lead to pDC activation and protective immune responses to skin injury, overexpression of antimicrobial peptides in psoriasis drives excessive sensing of self-nucleic acids by pDCs resulting in IFN-driven autoimmunity. In skin tumors, pDCs are unable to sense self-nucleic acids; however, therapeutic activation of pDCs by synthetic nucleic acids or analogues can be exploited to generate antitumor immunity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: A high dietary protein intake has been shown to blunt the deposition of intrahepatic lipids in high-fat- and high-carbohydrate-fed rodents and humans. OBJECTIVE: The aim of this study was to evaluate the effect of essential amino acid supplementation on the increase in hepatic fat content induced by a high-fructose diet in healthy subjects. DESIGN: Nine healthy male volunteers were studied on 3 occasions in a randomized, crossover design after 6 d of dietary intervention. Dietary conditions consisted of a weight-maintenance balanced diet (control) or the same balanced diet supplemented with 3 g fructose · kg(-1) · d(-1) and 6.77 g of a mixture of 5 essential amino acids 3 times/d (leucine, isoleucine, valine, lysine, and threonine) (HFrAA) or with 3 g fructose · kg(-1) · d(-1) and a maltodextrin placebo 3 times/d (HFr); there was a washout period of 4 to 10 wk between each condition. For each condition, the intrahepatocellular lipid (IHCL) concentration, VLDL-triglyceride concentration, and VLDL-[(13)C]palmitate production were measured after oral loading with [(13)C]fructose. RESULTS: HFr increased the IHCL content (1.27 ± 0.31 compared with 2.74 ± 0.55 vol %; P < 0.05) and VLDL-triglyceride (0.55 ± 0.06 compared with 1.40 ± 0.15 mmol/L; P < 0.05). HFr also enhanced VLDL-[(13)C]palmitate production. HFrAA significantly decreased IHCL compared with HFr (to 2.30 ± 0.43 vol%; P < 0.05) but did not change VLDL-triglyceride concentrations or VLDL-[(13)C]palmitate production. CONCLUSIONS: Supplementation with essential amino acids blunts the fructose-induced increase in IHCL but not hypertriglyceridemia. This is not because of inhibition of VLDL-[(13)C]palmitate production. This trial was registered at www.clinicaltrials.gov as NCT01119989.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fungus Aspergillus nidulans contains both a mitochondrial and peroxisomal ß-oxidation pathway. This work was aimed at studying the influence of mutations in the foxA gene, encoding a peroxisomal multifunctional protein, or in the scdA/echA genes, encoding a mitochondrial short-chain dehydrogenase and an enoyl-CoA hydratase, respectively, on the carbon flux to the peroxisomal ß-oxidation pathway. A. nidulans transformed with a peroxisomal polyhydroxyalkanoate (PHA) synthase produced PHA from the polymerization of 3-hydroxyacyl-CoA intermediates derived from the peroxisomal ß-oxidation of external fatty acids. PHA produced from erucic acid or heptadecanoic acid contained a broad spectrum of monomers, ranging from 5 to 14 carbons, revealing that the peroxisomal ß-oxidation cycle can handle both long and short-chain intermediates. While the ∆foxA mutant grown on erucic acid or oleic acid synthesized 10-fold less PHA compared to wild type, the same mutant grown on octanoic acid or heptanoic acid produced 3- to 6-fold more PHA. Thus, while FoxA has an important contribution to the degradation of long-chain fatty acids, the flux of short-chain fatty acids to peroxisomal ß-oxidation is actually enhanced in its absence. While no change in PHA was observed in the ∆scdA∆echA mutant grown on erucic acid or oleic acid compared to wild type, there was a 2- to 4-fold increased synthesis of PHA in ∆scdA∆echA cells grown in octanoic acid or heptanoic acid. These results reveal that a compensatory mechanism exists in A. nidulans that increases the flux of short-chain fatty acids towards the peroxisomal ß-oxidation cycle when the mitochondrial ß-oxidation pathway is defective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fatty acids are the basis of so-called stearates which are frequently used as lubricants in the production of ecstasy tablets. Being a product added at the initial tablet production step its composition does not change once the compression is performed. The analysis of fatty acids can therefore provide useful information for a drug intelligence purpose. In this context an appropriate analytical method was developed to improve results already obtained by routine analyses. Considering the small quantity of such fatty acids in ecstasy tablets (not, vert, similar3%) the research focussed on their extraction and concentration. Two different procedures were tested: (1) liquid/liquid extraction using dichloromethane followed by derivatisation and (2) in situ transesterification using bortrifluoride. Analyses were performed by GC-MS. The two procedures were optimized and applied to eight ecstasy seizures, in order to choose one of the procedures for its application to a large ecstasy sample set. They were compared by considering the number of peaks detected and sample amount needed, reproducibility and other technical aspects.