222 resultados para retinal pigment epithelium (RPE)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: This study investigates the effects of triamcinolone acetonide (TA) on retinal endothelial cells in vitro and explores the potential vascular toxic effect of TA injected into the vitreous cavity of rats in vivo. METHODS: Subconfluent endothelial cells were treated with either 0.1 mg/ml or 1 mg/ml TA in 1% ethanol. Control cells were either untreated or exposed to 1% ethanol. Cell viability was evaluated at 24 h, 72 h, and five days using the tetrazolium 3-(4,5-dimethylthiazol-2-yl)-2,5 phenyltetrazolium bromide test (MTT) and lactate dehydrogenase (LDH) assays. Cell proliferation was evaluated by 5-bromo-2-deoxyuridine (BrdU) test. Apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling assay (TUNEL assay), annexin-binding, and caspase 3 activation. Caspase-independent cell deaths were investigated by immunohistochemistry using antibodies against apoptosis inducing factor (AIF), cytochrome C, microtubule-associated protein (MAP)-light chain 3 (MAP-LC3), and Leukocyte Elastase Inhibitor/Leukocyte Elastase Inhibitor-derived DNase II (LEI/L-DNase II). In vivo, semithin and ultrathin structure analysis and vascular casts were performed to examine TA-induced changes of the choroidal vasculature. In addition, outer segments phagocytosis assay on primary retinal pigment epithelium (RPE) cells was performed to assess cyclooxygenase (COX-2) and vascular endothelial growth factor (VEGF) mRNAs upregulation with or without TA. RESULTS: The inhibitory effect of TA on cell proliferation could not explain the significant reduction in cell viability. Indeed, TA induced a time-dependent reduction of bovine retinal endothelial cells viability. Annexin-binding positive cells were observed. Cytochrome C was not released from mitochondria. L-DNase II was found translocated to the nucleus, meaning that LEI was changed into L-DNase II. AIF was found nuclearized in some cells. LC3 labeling showed the absence of autophagic vesicles. No autophagy or caspase dependent apoptosis was identified. At 1 mg/ml TA induced necrosis while exposure to lower concentrations for 3 to 5 days induced caspase independent apoptosis involving AIF and LEI/L-DNase II. In vivo, semithin and ultrathin structure analysis and vascular casts revealed that TA mostly affected the choroidal vasculature with a reduction of choroidal thickness and increased the avascular areas of the choriocapillaries. Experiments performed on primary RPE cells showed that TA downregulates the basal expression of COX-2 and VEGF and inhibits the outer segments (OS)-dependent COX-2 induction but not the OS-dependent VEGF induction. CONCLUSIONS: This study demonstrates for the first time that glucocorticoids exert direct toxic effect on endothelial cells through caspase-independent cell death mechanisms. The choroidal changes observed after TA intravitreous injection may have important implications regarding the safety profile of TA use in human eyes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To evaluate functional and ultrastructural changes in the retina of scavenger receptor B1 (SR-BI) knockout (KO) mice consuming a high fat cholate (HFC) diet. METHODS: Three-month-old male KO and wild-type (WT) mice were fed an HFC diet for 30 weeks. After diet supplementation, plasma cholesterol levels and electroretinograms were analyzed. Neutral lipids were detected with oil red O, and immunohistochemistry was performed on cryostat ocular tissue sections. The retina, Bruch's membrane (BM), retinal pigment epithelium (RPE), and choriocapillaris (CC) were analyzed by transmission electron microscopy. RESULTS: Using the WT for reference, ultrastructural changes were recorded in HFC-fed SR-BI KO mice, including lipid inclusions, a patchy disorganization of the photoreceptor outer segment (POS) and the outer nuclear layer (ONL), and BM thickening with sparse sub-RPE deposits. Within the CC, there was abnormal disorganization of collagen fibers localized in ectopic sites with sparse and large vacuolization associated with infiltration of macrophages in the subretinal space, reflecting local inflammation. These lesions were associated with electroretinographic abnormalities, particularly increasing implicit time in a- and b-wave scotopic responses. Abnormal vascular endothelial growth factor (VEGF) staining was detected in the outer nuclear layer. CONCLUSIONS: HFC-fed SR-BI KO mice thus presented sub-RPE lipid-rich deposits and functional and morphologic alterations similar to some features observed in dry AMD. The findings lend further support to the hypothesis that atherosclerosis causes retinal and subretinal damage that increases susceptibility to some forms of AMD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the power of genetics, the mouse has become a widely used animal model in vision research. However, its eyeball has an axial length of only about 2 mm. The present protocol describes how to easily dissect the small rodent eye post mortem. This allows collecting different tissues of the eye, i.e., cornea, lens, iris, retina, optic nerve, retinal pigment epithelium (RPE), and sclera. We further describe in detail how to process these eye samples in order to obtain high‐quality RNA for RNA expression profiling studies. Depending on the eye tissue to be analyzed, we present appropriate lysis buffers to prepare total protein lysates for immunoblot and immuno‐precipitation analyses. Fixation, inclusion, embedding, and cryosectioning of the globe for routine histological analyses (HE staining, DAPI staining, immunohistochemistry, in situ hybridization) is further presented. These basic protocols should allow novice investigators to obtain eye tissue samples rapidly for their experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BIGH3 is a secreted protein, part of the extracellular matrix where it interacts with collagen and integrins on the cell surface. BIGH3 can play opposing roles in cancer, acting as either tumor suppressor or promoter, and its mutations lead to different forms of corneal dystrophy. Although many studies have been carried out, little is known about the physiological role of BIGH3. Using the cre-loxP system, we generated a mouse model with disruption of the Bigh3 genomic locus. Bigh3 silencing did not result in any apparent phenotype modifications, the mice remained viable and fertile. We were able to determine the presence of BIGH3 in the retinal pigment epithelium (RPE). In the absence of BIGH3, a transient decrease in the apoptotic process involved in retina maturation was observed, leading to a transient increase in the INL thickness at P15. This phenomenon was accompanied by an increased activity of the pro-survival ERK pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diabetic retinopathy is associated with ocular inflammation, leading to retinal barrier breakdown, macular edema, and visual cell loss. We investigated the molecular mechanisms involved in microglia/macrophages trafficking in the retina and the role of protein kinase Cζ (PKCζ) in this process. Goto Kakizaki (GK) rats, a model for spontaneous type 2 diabetes were studied until 12 months of hyperglycemia. Up to 5 months, sparse microglia/macrophages were detected in the subretinal space, together with numerous pores in retinal pigment epithelial (RPE) cells, allowing inflammatory cell traffic between the retina and choroid. Intercellular adhesion molecule-1 (ICAM-1), caveolin-1 (CAV-1), and PKCζ were identified at the pore border. At 12 months of hyperglycemia, the significant reduction of pores density in RPE cell layer was associated with microglia/macrophages accumulation in the subretinal space together with vacuolization of RPE cells and disorganization of photoreceptors outer segments. The intraocular injection of a PKCζ inhibitor at 12 months reduced iNOS expression in microglia/macrophages and inhibited their migration through the retina, preventing their subretinal accumulation. We show here that a physiological transcellular pathway takes place through RPE cells and contributes to microglia/macrophages retinal trafficking. Chronic hyperglycemia causes alteration of this pathway and subsequent subretinal accumulation of activated microglia/macrophages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To evaluate the safety and potential use of poly(lactic) acid (PLA) and poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) as vectors for gene transfer to RPE cells. METHODS: Experiments were conducted with primary bovine RPE cells and with the ARPE-19 human RPE cell line. Rhodamine loaded NPs were used to study factors influencing the internalization process by the various RPE cells: concentrations of NPs, duration of contact time, stage of cell culture and ambient temperature. The extent of NPs internalization was evaluated by fluorescence and phase microscopy. Potential NP toxicity was measured by the trypan blue exclusion dye test and the MTT method. Green fluorescent protein (GFP) plasmid or red nuclear fluorescent protein (RNFP) plasmid were sequestered in NPs. The ability ot these "loaded" NPs to generate gene transfection and protein expression in RPE cells was assessed both in vivo and in vitro by fluorescence and confocal microscopy. RESULTS: The extent of NP internalization in cultured cells increases with their concentration reaching a plateau at 1 mg/ml and a contact time of up to 6 h. Temperature and culture stage did not influence the in vitro internalization process. No toxic effects on RPE cells could be detected when these were incubated with up to 4 mg/ml of NPs. In human and bovine RPE cells incubated with GFP loaded NPs, cytoplasmic green fluorescence was observed in 14+/-1.65% of the cultured cells. Incubation with RNFP loaded NPs yielded a nuclear red fluorescence in 18.9+/-1.6% of the cells. These percentage levels of expression initially detected after 48 h of incubation remained unchanged during the following 8 additional days in culture. No significant differences in the extent of cytoplasm or nuclear fluorescence expression were observed between bovine or human RPE cultured cells. In vivo, a preferential RNFP expression within the RPE cell layer was detected after intra vitreous injection of RNFP plasmid loaded NPs. CONCLUSIONS: The ability of PLGA NPs to sequester plasmids, their nontoxic characteristics, and rapid internalization enables gene transfer and expression in RPE cells. These findings may be of potential use when designing future gene therapy strategies for ocular diseases of the posterior segment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Corticosteroids have recorded beneficial clinical effects and are widely used in medicine. In ophthalmology, besides their treatment benefits, side effects, including ocular toxicity have been observed especially when intraocular delivery is used. The mechanism of these toxic events remains, however, poorly understood. In our present study, we investigated the mechanisms and potential pathways of corticosteroid-induced retinal cell death. METHODS: Rats were sacrificed 24 h and 8 days after an intravitreous injection of 1 microl (40 microg) of Kenacort Retard. The eyes were processed for ultra structure analysis and detection of activated caspase-3, cytochrome-C, apoptosis-inducing factor (AIF), LEI-L-Dnase II, terminal transferase dUTP nick end labeling (TUNEL), and microtubule-associated protein 1-light chain 3 (MAP-LC3). In vitro, rat retinal pigment epithelial cells (RPE), retinal Müller glial cells (RMG) and human ARPE-19 cells were treated with triamcinolone acetonide (TA) or other glucocorticoids. Cell viability was quantified by 3-(4,5-dimethylthiazol-2-yl)-2,5 phenyltetrazolium bromide test (MTT) assay and cell counts. Nuclei staining, TUNEL assay, annexin-V binding, activated caspase-3 and lactate dehydrogenase (LDH) production characterized cell death. Localization of cytochrome-C, AIF, LEI-and L-Dnase II, and staining with MAP-LC3 or monodansylcadaverine were also carried out. Finally, ARPE-19 cells transfected with AIP-1/Alix were exposed to TA. RESULTS: In vitro incubation of retinal cell in the presence of corticosteroids induced a specific and dose-dependent reduction of cell viability. These toxic events were not associated with the anti-inflammatory activity of these compounds but depended on the hydro solubility of their formulation. Before cell death, extensive cytoplasmic vacuolization was observed in the retinal pigment epithelial (RPE) cells in vivo and in vitro. The cells however, did not show known caspase-dependent or caspase-independent apoptotic reactions. These intracellular vacuoles were negative for MAP-LC3 but some stained positive for monodansylcadaverine. Furthermore, over expression of AIP-1/Alix inhibited RPE cell death. CONCLUSIONS: These observations suggest that corticosteroid-induced retinal cell death may be carried out mainly through a paraptosis pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

VEGF is considered as an important factor in the pathogenesis of macular edema. VEGF induces the rupture of the blood retinal barrier and may also influence the retinal pigment epithelial (RPE) outer retinal barrier. The aim of this work was to analyze the influence of the VEGF receptor pathways in the modulation of the RPE barrier breakdown in vitro and in vivo. The ARPE19 human junctions in culture are modulated by VEGF through VEGFR-1 but not through VEGFR-2. PlGF-1, that is a pure agonist of VEGFR-1, is produced in ARPE-19 cells under hypoxic conditions and mimics VEGF effects on the external retinal barrier as measured by TER and inulin flux. In vivo, the intravitreous injection of PlGF-1 induces a rupture of the external retinal barrier together with a retinal edema. This effect is reversible within 4 days. VEGF-E, that is a pure agonist of VEGFR-2, does not induce any acute effect on the RPE barrier. These results demonstrate that PlGF-1 can reproduce alterations of the RPE barrier occurring during diabetic retinopathy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: An increased mRNA expression of the genes coding for the extracellular matrix proteins neuroglycan C (NGC), interphotoreceptor matrix proteoglycan 2 (IMPG2), and CD44 antigen (CD44) has been observed during retinal degeneration in mice with a targeted disruption of the Rpe65 gene (Rpe65-/- mouse). To validate these data, we analyzed this differential expression in more detail by characterizing retinal NGC mRNA isoform and protein expression during disease progression. METHODS: Retinas from C57/Bl6 wild-type and Rpe65-/- mice, ranging 2 to 18 months of age, were used. NGC, IMPG2, and CD44 mRNA expression was assessed by oligonucleotide microarray, quantitative PCR, and in situ hybridization. Retinal NGC protein expression was analyzed by western blot and immunohistochemistry. RESULTS: As measured by quantitative PCR, mRNA expression of NGC and CD44 was induced by about 2 fold to 3 fold at all time points in Rpe65-/- retinas, whereas initially 4 fold elevated IMPG2 mRNA levels progressively declined. NGC and IMPG2 mRNAs were expressed in the ganglion cell layer, the inner nuclear layer, and at the outer limiting membrane. NGC mRNA was also detected in retinal pigment epithelium cells (RPE), where its mRNA expression was not induced during retinal degeneration. NGC-I was the major isoform detected in the retina and the RPE, whereas NGC-III was barely detected and NGC-II could not be assessed. NGC protein expression was at its highest levels on the apical membrane of the RPE. NGC protein levels were induced in retinas from 2- and 4-month-old Rpe65-/- mice, and an increased amount of the activity-cleaved NGC ectodomain containing an epidermal growth factor (EGF)-like domain was detected. CONCLUSIONS: During retinal degeneration in Rpe65-/- mice, NGC expression is induced in the neural retina, but not in the RPE, where NGC is expressed at highest levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The A3243G point mutation in mitochondrial DNA (mtDNA) is associated with MELAS (mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes) and MIDD syndromes (maternally inherited diabetes and deafness). Both MELAS and MIDD patients can present with visual symptoms due to a retinopathy, sometimes before the genetic diagnosis is made. CASE PRESENTATION: Patient 1: 46 year-old woman with diabetes mellitus and hearing loss was referred for an unspecified maculopathy detected during screening evaluation for diabetic retinopathy. Visual acuity was 20/20 in both eyes. Fundus examination showed bilateral macular and peripapillary hyperpigmented/depigmented areas.Patient 2: 45 year-old woman was referred for recent vision loss in her left eye. History was remarkable for chronic fatigue, migraine and diffuse muscular pain. Visual acuity was 20/20 in her right eye and 20/30 in her left eye. Fundus exhibited several nummular perifoveal islands of retinal pigment epithelium atrophy and adjacent pale deposits in both eyes.Retinal anatomy was investigated with autofluorescence, retinal angiography and optical coherence tomography. Retinal function was assessed with automated static perimetry, full-field and multifocal electroretinography and electro-oculography. Genetic testing of mtDNA identified a point mutation at the locus 3243. CONCLUSION: Observation of RPE abnormalities in the context of suggestive systemic findings should prompt mtDNA testing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: Disruption of the retinal pigment epithelial (RPE) barrier contributes to sub-retinal fluid and retinal oedema as observed in diabetic retinopathy. High placental growth factor (PLGF) vitreous levels have been found in diabetic patients. This work aimed to elucidate the influence of PLGF-1 on a human RPE cell line (ARPE-19) barrier in vitro and on normal rat eyes in vivo. METHODS: ARPE-19 permeability was measured using transepithelial resistance and inulin flux under stimulation of PLGF-1, vascular endothelial growth factor (VEGF)-E and VEGF 165. Using RT-PCR, we evaluated the effect of hypoxic conditions or insulin on transepithelial resistance and on PLGF-1 and VEGF receptors. The involvement of mitogen-activated protein kinase (MEK, also known as MAPK)/extracellular signal-regulated kinase (ERK, also known as EPHB2) signalling pathways under PLGF-1 stimulation was evaluated by western blot analysis and specific inhibitors. The effect of PLGF-1 on the external haemato-retinal barrier was evaluated after intravitreous injection of PLGF-1 in the rat eye; evaluation was by semi-thin analysis and zonula occludens-1 immunolocalisation on flat-mounted RPE. RESULTS: In vitro, PLGF-1 induced a reversible decrease of transepithelial resistance and enhanced tritiated inulin flux. These effects were specifically abolished by an antisense oligonucleotide directed at VEGF receptor 1. Exposure of ARPE-19 cells to hypoxic conditions or to insulin induced an upregulation of PLGF-1 expression along with increased transcellular permeability. The PLGF-1-induced RPE cell permeability involved the MEK signalling pathway. Injection of PLGF-1 in the rat eye vitreous induced an opening of the RPE tight junctions with subsequent sub-retinal fluid accumulation, retinal oedema and cytoplasm translocation of junction proteins. CONCLUSIONS/INTERPRETATION: Our results indicate that PLGF-1 may be a potential regulation target for the control of diabetic retinal and macular oedema.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The subretinal transplantation of retinal pigment epithelial cells (RPE cells) grown on polymeric supports may have interest in retinal diseases affecting RPE cells. In this study, montmorillonite based polyurethane nanocomposite (PU-NC) was investigated as substrate for human RPE cell growth (ARPE-19 cells). The ARPE-19 cells were seeded on the PU-NC, and cell viability, proliferation and differentiation were investigated. The results indicated that ARPE-19 cells attached, proliferated onto the PU-NC, and expressed occludin. The in vivo ocular biocompatibility of the PU-NC was assessed by using the HET-CAM; and through its implantation under the retina. The direct application of the nanocomposite onto the CAM did not compromise the vascular tissue in the CAM surface, suggesting no ocular irritancy of the PU-NC film. The nanocomposite did not elicit any inflammatory response when implanted into the eye of rats. The PU-NC may have potential application as a substrate for RPE cell transplantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To study the effect of various baseline factors, particularly the type of drug (ranibizumab vs aflibercept), on the functional and anatomic response of treatment-naïve pigment epithelial detachment (PED) associated with neovascular age-related macular degeneration (neovascular AMD), after 3 intravitreal injections. DESIGN: Retrospective consecutive case series. METHODS: This study included 102 patients (n = 115 eyes) with treatment-naïve neovascular AMD and PED (>150 μm), who were treated with either ranibizumab (n = 68 eyes) or aflibercept (n = 47 eyes). A multivariate analysis using stepwise linear regression was performed in order to assess factors influencing visual acuity improvement, as well as treatment response of PED height after 3 monthly injections. RESULTS: Multivariate analysis revealed that better visual improvement was associated with lower best-corrected visual acuity (BCVA) at baseline (P = .001), presence of subretinal fluid (P = .001), and retinal angiomatous proliferation (P = .001); PED reduction was associated with higher PED at baseline (P = .001), predominantly serous PED (P = .003), and the use of aflibercept (P = .022). Drug type was not associated with change in BCVA at 3 months. CONCLUSION: Eyes with neovascular AMD and PED showed significant functional and anatomic response after 3 monthly intravitreal anti-VEGF injections. The functional response depended on baseline BCVA, presence of subretinal fluid, and retinal angiomatous proliferation, while anatomic response was influenced by baseline PED height, degree of vascularization, and drug type. Drug type was not associated with change in BCVA, but had a weak effect on anatomic response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Milk fat globule-epidermal growth factor-factor VIII (MFGE8) is necessary for diurnal outer segment phagocytosis and promotes VEGF-dependent neovascularization. The prevalence of two single nucleotide polymorphisms (SNP) in MFGE8 was studied in two exsudative or "wet" Age-related Macular Degeneration (AMD) groups and two corresponding control groups. We studied the effect of MFGE8 deficiency on retinal homeostasis with age and on choroidal neovascularization (CNV) in mice. METHODS: The distribution of the SNP (rs4945 and rs1878326) of MFGE8 was analyzed in two groups of patients with "wet" AMD and their age-matched controls from Germany and France. MFGE8-expressing cells were identified in Mfge8(+/-) mice expressing ß-galactosidase. Aged Mfge8(+/-) and Mfge8(-/-) mice were studied by funduscopy, histology, electron microscopy, scanning electron microscopy of vascular corrosion casts of the choroid, and after laser-induced CNV. RESULTS: rs1878326 was associated with AMD in the French and German group. The Mfge8 promoter is highly active in photoreceptors but not in retinal pigment epithelium cells. Mfge8(-/-) mice did not differ from controls in terms of fundus appearance, photoreceptor cell layers, choroidal architecture or laser-induced CNV. In contrast, the Bruch's membrane (BM) was slightly but significantly thicker in Mfge8(-/-) mice as compared to controls. CONCLUSIONS: Despite a reproducible minor increase of rs1878326 in AMD patients and a very modest increase in BM in Mfge8(-/-) mice, our data suggests that MFGE8 dysfunction does not play a critical role in the pathogenesis of AMD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: Diabetic macular edema represents the main cause of visual loss in diabetic retinopathy. Besides inner blood retinal barrier breakdown, the role of the outer blood retinal barrier breakdown has been poorly analyzed. We characterized the structural and molecular alterations of the outer blood retinal barrier during the time course of diabetes, focusing on PKCζ, a critical protein for tight junction assembly, known to be overactivated by hyperglycemia. METHODS: Studies were conducted on a type2 diabetes Goto-Kakizaki rat model. PKCζ level and subcellular localization were assessed by immunoblotting and immunohistochemistry. Cell death was detected by TUNEL assays. PKCζ level on specific layers was assessed by laser microdissection followed by Western blotting. The functional role of PKCζ was then evaluated in vivo, using intraocular administration of its specific inhibitor. RESULTS: PKCζ was localized in tight junction protein complexes of the retinal pigment epithelium and in photoreceptors inner segments. Strikingly, in outer segment PKCζ staining was restricted to cone photoreceptors. Short-term hyperglycemia induced activation and delocalization of PKCζ from both retinal pigment epithelium junctions and cone outer segment. Outer blood retinal barrier disruption and photoreceptor cone degeneration characterized long-term hyperglycemia. In vivo, reduction of PKCζ overactivation using a specific inhibitor, restored its tight-junction localization and not only improved the outer blood retinal barrier, but also reduced photoreceptor cell-death. CONCLUSIONS: In the retina, hyperglycemia induced overactivation of PKCζ is associated with outer blood retinal barrier breakdown and photoreceptor degeneration. In vivo, short-term inhibition of PKCζ restores the outer barrier structure and reduces photoreceptor cell death, identifying PKCζ as a potential target for early and underestimated diabetes-induced retinal pathology.