437 resultados para respiratory metabolism
Resumo:
Invasive studies suggest that healthy children living at high altitude display pulmonary hypertension, but the data to support this assumption are sparse. Nitric oxide (NO) synthesized by the respiratory epithelium regulates pulmonary artery pressure, and its synthesis was reported to be increased in Aymara high-altitude dwellers. We hypothesized that pulmonary artery pressure will be lower in Aymara children than in children of European ancestry at high altitude, and that this will be related to increased respiratory NO. We therefore compared pulmonary artery pressure and exhaled NO (a marker of respiratory epithelial NO synthesis) between large groups of healthy children of Aymara (n = 200; mean +/- SD age, 9.5 +/- 3.6 years) and European ancestry (n = 77) living at high altitude (3,600 to 4,000 m). We also studied a group of European children (n = 29) living at low altitude. The systolic right ventricular to right atrial pressure gradient in the Aymara children was normal, even though significantly higher than the gradient measured in European children at low altitude (22.5 +/- 6.1 mm Hg vs 17.7 +/- 3.1 mm Hg, p < 0.001). In children of European ancestry studied at high altitude, the pressure gradient was 33% higher than in the Aymara children (30.0 +/- 5.3 mm Hg vs 22.5 +/- 6.1 mm Hg, p < 0.0001). In contrast to what was expected, exhaled NO tended to be lower in Aymara children than in European children living at the same altitude (12.4 +/- 8.8 parts per billion [ppb] vs 16.1 +/- 11.1 ppb, p = 0.06) and was not related to pulmonary artery pressure in either group. Aymara children are protected from hypoxic pulmonary hypertension at high altitude. This protection does not appear to be related to increased respiratory NO synthesis.
Resumo:
BACKGROUND: Dairy calcium supplementation has been proposed to increase fat oxidation and to inhibit lipogenesis. OBJECTIVE: We aimed to investigate the effects of calcium supplementation on markers of fat metabolism. DESIGN: In a placebo-controlled, crossover experiment, 10 overweight or obese subjects who were low calcium consumers received 800 mg dairy Ca/d for 5 wk. After 4 wk, adipose tissue was taken for biopsy for analysis of gene expression. Respiratory exchange, glycerol turnover, and subcutaneous adipose tissue microdialysis were performed for 7 h after consumption of 400 mg Ca or placebo, and the ingestion of either randomized slow-release caffeine (SRC; 300 mg) or lactose (500 mg). One week later, the test was repeated with the SRC or lactose crossover. RESULTS: Calcium supplementation increased urinary calcium excretion by 16% (P = 0.017) but did not alter plasma parathyroid hormone or osteocalcin concentrations. Resting energy expenditure (59.9 +/- 3.0 or 59.6 +/- 3.3 kcal/h), fat oxidation (58.4 +/- 2.5 or 53.8 +/- 2.2 mg/min), plasma free fatty acid concentrations (0.63 +/- 0.02 or 0.62 +/- 0.03 mmol/L), and glycerol turnover (3.63 +/- 0.41 or 3.70 +/- 0.38 micromol . kg(-1) . min(-1)) were similar with or without calcium, respectively. SRC significantly increased free fatty acid concentrations, resting fat oxidation, and resting energy expenditure. During microdialysis, epinephrine increased dialysate glycerol concentrations by 250% without and 254% with calcium. Expression of 7 key metabolic genes in subcutaneous adipose tissue was not affected by calcium supplementation. CONCLUSION: Dairy calcium supplementation in overweight subjects with habitually low calcium intakes failed to alter fat metabolism and energy expenditure under resting conditions and during acute stimulation by caffeine or epinephrine
Resumo:
PURPOSE: Low tidal volume ventilation and permissive hypercapnia are required in patients with sepsis complicated by ARDS. The effects of hypercapnia on tissue oxidative metabolism in this setting are unknown. We therefore determined the effects of moderate hypercapnia on markers of systemic and splanchnic oxidative metabolism in an animal model of endotoxemia. METHODS: Anesthetized rats maintained at a PaCO(2) of 30, 40 or 60 mmHg were challenged with endotoxin. A control group (PaCO(2) 40 mmHg) received isotonic saline. Hemodynamic variables, arterial lactate, pyruvate, and ketone bodies were measured at baseline and after 4 h. Tissue adenosine triphosphate (ATP) and lactate were measured in the small intestine and the liver after 4 h. RESULTS: Endotoxin resulted in low cardiac output, increased lactate/pyruvate ratio and decreased ketone body ratio. These changes were not influenced by hypercapnia, but were more severe with hypocapnia. In the liver, ATP decreased and lactate increased independently from PaCO(2) after endotoxin. In contrast, the drop of ATP and the rise in lactate triggered by endotoxin in the intestine were prevented by hypercapnia. CONCLUSIONS: During endotoxemia in rats, moderate hypercapnia prevents the deterioration of tissue energetics in the intestine.
Resumo:
BACKGROUND: Highway maintenance workers are constantly and simultaneously exposed to traffic-related particle and noise emissions, and both have been linked to increased cardiovascular morbidity and mortality in population-based epidemiology studies. OBJECTIVES: We aimed to investigate short-term health effects related to particle and noise exposure. METHODS: We monitored 18 maintenance workers, during as many as five 24-hour periods from a total of 50 observation days. We measured their exposure to fine particulate matter (PM2.5), ultrafine particles, noise, and the cardiopulmonary health endpoints: blood pressure, pro-inflammatory and pro-thrombotic markers in the blood, lung function and fractional exhaled nitric oxide (FeNO) measured approximately 15 hours post-work. Heart rate variability was assessed during a sleep period approximately 10 hours post-work. RESULTS: PM2.5 exposure was significantly associated with C-reactive protein and serum amyloid A, and negatively associated with tumor necrosis factor α. None of the particle metrics were significantly associated with von Willebrand factor or tissue factor expression. PM2.5 and work noise were associated with markers of increased heart rate variability, and with increased HF and LF power. Systolic and diastolic blood pressure on the following morning were significantly associated with noise exposure after work, and non-significantly associated with PM2.5. We observed no significant associations between any of the exposures and lung function or FeNO. CONCLUSIONS: Our findings suggest that exposure to particles and noise during highway maintenance work might pose a cardiovascular health risk. Actions to reduce these exposures could lead to better health for this population of workers.
Resumo:
Acute and chronic respiratory failure is one of the major and potentially life-threatening features in individuals with myotonic dystrophy type 1 (DM1). Despite several clinical demonstrations showing respiratory problems in DM1 patients, the mechanisms are still not completely understood. This study was designed to investigate whether the DMSXL transgenic mouse model for DM1 exhibits respiratory disorders and, if so, to identify the pathological changes underlying these respiratory problems. Using pressure plethysmography, we assessed the breathing function in control mice and DMSXL mice generated after large expansions of the CTG repeat in successive generations of DM1 transgenic mice. Statistical analysis of breathing function measurements revealed a significant decrease in the most relevant respiratory parameters in DMSXL mice, indicating impaired respiratory function. Histological and morphometric analysis showed pathological changes in diaphragmatic muscle of DMSXL mice, characterized by an increase in the percentage of type I muscle fibers, the presence of central nuclei, partial denervation of end-plates (EPs) and a significant reduction in their size, shape complexity and density of acetylcholine receptors, all of which reflect a possible breakdown in communication between the diaphragmatic muscles fibers and the nerve terminals. Diaphragm muscle abnormalities were accompanied by an accumulation of mutant DMPK RNA foci in muscle fiber nuclei. Moreover, in DMSXL mice, the unmyelinated phrenic afferents are significantly lower. Also in these mice, significant neuronopathy was not detected in either cervical phrenic motor neurons or brainstem respiratory neurons. Because EPs are involved in the transmission of action potentials and the unmyelinated phrenic afferents exert a modulating influence on the respiratory drive, the pathological alterations affecting these structures might underlie the respiratory impairment detected in DMSXL mice. Understanding mechanisms of respiratory deficiency should guide pharmaceutical and clinical research towards better therapy for the respiratory deficits associated with DM1.
Resumo:
The pharmacogenetics of antimalarial agents are poorly known, although the application of pharmacogenetics might be critical in optimizing treatment. This population pharmacokinetic-pharmacogenetic study aimed at assessing the effects of single nucleotide polymorphisms (SNPs) in cytochrome P450 isoenzyme genes (CYP, namely, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, and CYP3A5) and the N-acetyltransferase 2 gene (NAT2) on the pharmacokinetics of artemisinin-based combination therapies in 150 Tanzanian patients treated with artemether-lumefantrine, 64 Cambodian patients treated with artesunate-mefloquine, and 61 Cambodian patients treated with dihydroartemisinin-piperaquine. The frequency of SNPs varied with the enzyme and the population. Higher frequencies of mutant alleles were found in Cambodians than Tanzanians for CYP2C9*3, CYP2D6*10 (100C → T), CYP3A5*3, NAT2*6, and NAT2*7. In contrast, higher frequencies of mutant alleles were found in Tanzanians for CYP2D6*17 (1023C → T and 2850C → T), CYP3A4*1B, NAT2*5, and NAT2*14. For 8 SNPs, no significant differences in frequencies were observed. In the genetic-based population pharmacokinetic analyses, none of the SNPs improved model fit. This suggests that pharmacogenetic data need not be included in appropriate first-line treatments with the current artemisinin derivatives and quinolines for uncomplicated malaria in specific populations. However, it cannot be ruled out that our results represent isolated findings, and therefore more studies in different populations, ideally with the same artemisinin-based combination therapies, are needed to evaluate the influence of pharmacogenetic factors on the clearance of antimalarials.
Resumo:
BACKGROUND: This study describes the prevalence, associated anomalies, and demographic characteristics of cases of multiple congenital anomalies (MCA) in 19 population-based European registries (EUROCAT) covering 959,446 births in 2004 and 2010. METHODS: EUROCAT implemented a computer algorithm for classification of congenital anomaly cases followed by manual review of potential MCA cases by geneticists. MCA cases are defined as cases with two or more major anomalies of different organ systems, excluding sequences, chromosomal and monogenic syndromes. RESULTS: The combination of an epidemiological and clinical approach for classification of cases has improved the quality and accuracy of the MCA data. Total prevalence of MCA cases was 15.8 per 10,000 births. Fetal deaths and termination of pregnancy were significantly more frequent in MCA cases compared with isolated cases (p < 0.001) and MCA cases were more frequently prenatally diagnosed (p < 0.001). Live born infants with MCA were more often born preterm (p < 0.01) and with birth weight < 2500 grams (p < 0.01). Respiratory and ear, face, and neck anomalies were the most likely to occur with other anomalies (34% and 32%) and congenital heart defects and limb anomalies were the least likely to occur with other anomalies (13%) (p < 0.01). However, due to their high prevalence, congenital heart defects were present in half of all MCA cases. Among males with MCA, the frequency of genital anomalies was significantly greater than the frequency of genital anomalies among females with MCA (p < 0.001). CONCLUSION: Although rare, MCA cases are an important public health issue, because of their severity. The EUROCAT database of MCA cases will allow future investigation on the epidemiology of these conditions and related clinical and diagnostic problems.
Resumo:
La mesure de la fraction libre du magnésium circulant est désormais possible grâce aux électrodes sélectives. Lors d'une déplétion magnésique l'enquête étiologique est orientée par la comparaison de la magnésiurie et de la magnésémie. Les syndromes de Bortter, ou alcaloses hypokaliémiques d'origine rénale, sont des tubulopathies primitives définies par des signes simples: tension artérielle normale; alcalose hypokaliémiques; excrétion rénale conservée des chlorures et recherche de diurétiques négative dans les urines. Grâce à la mesure de la magnésémie et de la calciurie on distingue au moins deux alcaloses hypokaliémiques d'origine rénale, la maladie de Gitelman et le syndrome de Bartter au sens strict.
Uric acid is a danger signal activating NALP3 inflammasome in lung injury inflammation and fibrosis.
Resumo:
RATIONALE: Lung injury leads to pulmonary inflammation and fibrosis through myeloid differentiation primary response gene 88 (MyD88) and the IL-1 receptor 1 (IL-1R1) signaling pathway. The molecular mechanisms by which lung injury triggers IL-1beta production, inflammation, and fibrosis remain poorly understood. OBJECTIVES: To determine if lung injury depends on the NALP3 inflammasome and if bleomycin (BLM)-induced lung injury triggers local production of uric acid, thereby activating the NALP3 inflammasome in the lung. Methods: Inflammation upon BLM administration was evaluated in vivo in inflammasome-deficient mice. Pulmonary uric acid accumulation, inflammation, and fibrosis were analyzed in mice treated with the inhibitor of uric acid synthesis or with uricase, which degrades uric acid. MEASUREMENTS AND MAIN RESULTS: Lung injury depends on the NALP3 inflammasome, which is triggered by uric acid locally produced in the lung upon BLM-induced DNA damage and degradation. Reduction of uric acid levels using the inhibitor of uric acid synthesis allopurinol or uricase leads to a decrease in BLM-induced IL-1beta production, lung inflammation, repair, and fibrosis. Local administration of exogenous uric acid crystals recapitulates lung inflammation and repair, which depend on the NALP3 inflammasome, MyD88, and IL-1R1 pathways and Toll-like receptor (TLR)2 and TLR4 for optimal inflammation but are independent of the IL-18 receptor. CONCLUSIONS: Uric acid released from injured cells constitutes a major endogenous danger signal that activates the NALP3 inflammasome, leading to IL-1beta production. Reducing uric acid tissue levels represents a novel therapeutic approach to control IL-1beta production and chronic inflammatory lung pathology.
Resumo:
A 3D in vitro model of rat organotypic brain cell cultures in aggregates was used to investigate neurotoxicity mechanisms in glutaric aciduria type I (GA-I). 1 mM glutarate (GA) or 3-hydroxyglutarate (3OHGA) were repeatedly added to the culture media at two different time points. In cultures treated with 3OHGA, we observed an increase in lactate in the medium, pointing to a possible inhibition of Krebs cycle and respiratory chain. We further observed that 3OHGA and to a lesser extend GA induced an increase in ammonia production with concomitant decrease of glutamine concentrations, which may suggest an inhibition of the astrocytic enzyme glutamine synthetase. These previously unreported findings may uncover a pathogenic mechanism in this disease which has deleterious effects on early stages of brain development. By immunohistochemistry we showed that 3OHGA increased non-apoptotic cell death. On the cellular level, 3OHGA and to a lesser extend GA led to cell swelling and loss of astrocytic fibers whereas a loss of oligodendrocytes was only observed for 3OHGA. We conclude that 3OHGAwas the most toxic metabolite in our model for GA-I. 3OHGA induced deleterious effects on glial cells, an increase of ammonia production, and resulted in accentuated cell death of non-apoptotic origin.
Resumo:
Energy balance is the difference between metabolizable energy intake and total energy expenditure. Energy intake is difficult to measure accurately; changes in body weight, for example, are not a good measure of the adequacy of energy intake, because fluctuations in body weight are common even if the overall trend is toward weight loss. It is now customary to assess energy requirements indirectly from total energy expenditure. Total energy expenditure consists of basal metabolism, postprandial thermogenesis, and physical activity. Energy expenditure is related to both body weight and body composition. A reduction in total energy expenditure accompanies weight loss, because basal metabolic rate decreases with the loss of lean tissue mass. Similarly, with weight gain, there is an increase in basal metabolic rate, because lean tissue mass grows to support the increase in fat tissue mass. Excess energy intake over energy expenditure causes weight gain and an accompanying increase in total energy expenditure. Following a period of adaptation, total energy expenditure will match energy intake and body weight will stabilize at a higher level. This same relationship holds for weight loss. Respiratory quotient (measured in steady state) is an indication of the proportion of energy expenditure derived from fat and carbohydrate oxidation. Over long periods of time, fat balance is equivalent to energy balance, as an excess of fat intake over fat oxidation causes fat storage.
Resumo:
Cerebral metabolism is compartmentalized between neurons and glia. Although glial glycolysis is thought to largely sustain the energetic requirements of neurotransmission while oxidative metabolism takes place mainly in neurons, this hypothesis is matter of debate. The compartmentalization of cerebral metabolic fluxes can be determined by (13)C nuclear magnetic resonance (NMR) spectroscopy upon infusion of (13)C-enriched compounds, especially glucose. Rats under light α-chloralose anesthesia were infused with [1,6-(13)C]glucose and (13)C enrichment in the brain metabolites was measured by (13)C NMR spectroscopy with high sensitivity and spectral resolution at 14.1 T. This allowed determining (13)C enrichment curves of amino acid carbons with high reproducibility and to reliably estimate cerebral metabolic fluxes (mean error of 8%). We further found that TCA cycle intermediates are not required for flux determination in mathematical models of brain metabolism. Neuronal tricarboxylic acid cycle rate (V(TCA)) and neurotransmission rate (V(NT)) were 0.45 ± 0.01 and 0.11 ± 0.01 μmol/g/min, respectively. Glial V(TCA) was found to be 38 ± 3% of total cerebral oxidative metabolism, accounting for more than half of neuronal oxidative metabolism. Furthermore, glial anaplerotic pyruvate carboxylation rate (V(PC)) was 0.069 ± 0.004 μmol/g/min, i.e., 25 ± 1% of the glial TCA cycle rate. These results support a role of glial cells as active partners of neurons during synaptic transmission beyond glycolytic metabolism.
Resumo:
COPD is associated with some skeletal muscle dysfunction which contributes to a poor exercise tolerance. This dysfunction results from multiple factors: physical inactivity, corticosteroids, smoking, malnutrition, anabolic deficiency, systemic inflammation, hypoxia, oxidative stress. Respiratory rehabilitation is based on exercise training and allows patients with COPD to experience less dyspnoea, and to improve their exercise tolerance and quality of life. Not all patients, however, benefit from rehabilitation. Acknowledging the different factors leading to muscular dysfunction allows one to foresee new avenues to improve efficacy of exercise training in COPD.
Resumo:
Effects of insulin upon glucose metabolism were investigated in chick embryos explanted in vitro during the first 30 h of incubation. Insulin stimulated the glucose consumption of the chick gastrula (18 h) and neurula (24 h), but had no effect on the late blastula (0 h:laying) and on the stage of six to eight somites (30 h). The increase in glucose consumption concerned both the embryonic area pellucida (AP) and extraembryonic area opaca (AO). AP responded to a greater extent (50%) and at a lower range of concentrations (0.1-1.0 ng/ml) than AO (30%; 1-100 ng/ml). Insulin had no effect on the oxygen consumption of blastoderms, whereas it stimulated the aerobic lactate production (approximately 70% of the additional glucose consumption was converted to lactate). The nanomolar range of stimulating concentrations suggests that insulin has a specific effect in the chick embryo, and that it could modulate glucose metabolism in ovo as well. The transient sensitivity of the embryo to insulin is discussed in relation to behavior of mesodermal cells.