92 resultados para regional communities
Resumo:
Des progrès significatifs ont été réalisés dans le domaine de l'intégration quantitative des données géophysique et hydrologique l'échelle locale. Cependant, l'extension à de plus grandes échelles des approches correspondantes constitue encore un défi majeur. Il est néanmoins extrêmement important de relever ce défi pour développer des modèles fiables de flux des eaux souterraines et de transport de contaminant. Pour résoudre ce problème, j'ai développé une technique d'intégration des données hydrogéophysiques basée sur une procédure bayésienne de simulation séquentielle en deux étapes. Cette procédure vise des problèmes à plus grande échelle. L'objectif est de simuler la distribution d'un paramètre hydraulique cible à partir, d'une part, de mesures d'un paramètre géophysique pertinent qui couvrent l'espace de manière exhaustive, mais avec une faible résolution (spatiale) et, d'autre part, de mesures locales de très haute résolution des mêmes paramètres géophysique et hydraulique. Pour cela, mon algorithme lie dans un premier temps les données géophysiques de faible et de haute résolution à travers une procédure de réduction déchelle. Les données géophysiques régionales réduites sont ensuite reliées au champ du paramètre hydraulique à haute résolution. J'illustre d'abord l'application de cette nouvelle approche dintégration des données à une base de données synthétiques réaliste. Celle-ci est constituée de mesures de conductivité hydraulique et électrique de haute résolution réalisées dans les mêmes forages ainsi que destimations des conductivités électriques obtenues à partir de mesures de tomographic de résistivité électrique (ERT) sur l'ensemble de l'espace. Ces dernières mesures ont une faible résolution spatiale. La viabilité globale de cette méthode est testée en effectuant les simulations de flux et de transport au travers du modèle original du champ de conductivité hydraulique ainsi que du modèle simulé. Les simulations sont alors comparées. Les résultats obtenus indiquent que la procédure dintégration des données proposée permet d'obtenir des estimations de la conductivité en adéquation avec la structure à grande échelle ainsi que des predictions fiables des caractéristiques de transports sur des distances de moyenne à grande échelle. Les résultats correspondant au scénario de terrain indiquent que l'approche d'intégration des données nouvellement mise au point est capable d'appréhender correctement les hétérogénéitées à petite échelle aussi bien que les tendances à gande échelle du champ hydraulique prévalent. Les résultats montrent également une flexibilté remarquable et une robustesse de cette nouvelle approche dintégration des données. De ce fait, elle est susceptible d'être appliquée à un large éventail de données géophysiques et hydrologiques, à toutes les gammes déchelles. Dans la deuxième partie de ma thèse, j'évalue en détail la viabilité du réechantillonnage geostatique séquentiel comme mécanisme de proposition pour les méthodes Markov Chain Monte Carlo (MCMC) appliquées à des probmes inverses géophysiques et hydrologiques de grande dimension . L'objectif est de permettre une quantification plus précise et plus réaliste des incertitudes associées aux modèles obtenus. En considérant une série dexemples de tomographic radar puits à puits, j'étudie deux classes de stratégies de rééchantillonnage spatial en considérant leur habilité à générer efficacement et précisément des réalisations de la distribution postérieure bayésienne. Les résultats obtenus montrent que, malgré sa popularité, le réechantillonnage séquentiel est plutôt inefficace à générer des échantillons postérieurs indépendants pour des études de cas synthétiques réalistes, notamment pour le cas assez communs et importants où il existe de fortes corrélations spatiales entre le modèle et les paramètres. Pour résoudre ce problème, j'ai développé un nouvelle approche de perturbation basée sur une déformation progressive. Cette approche est flexible en ce qui concerne le nombre de paramètres du modèle et lintensité de la perturbation. Par rapport au rééchantillonage séquentiel, cette nouvelle approche s'avère être très efficace pour diminuer le nombre requis d'itérations pour générer des échantillons indépendants à partir de la distribution postérieure bayésienne. - Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale. However, extending corresponding approaches beyond the local scale still represents a major challenge, yet is critically important for the development of reliable groundwater flow and contaminant transport models. To address this issue, I have developed a hydrogeophysical data integration technique based on a two-step Bayesian sequential simulation procedure that is specifically targeted towards larger-scale problems. The objective is to simulate the distribution of a target hydraulic parameter based on spatially exhaustive, but poorly resolved, measurements of a pertinent geophysical parameter and locally highly resolved, but spatially sparse, measurements of the considered geophysical and hydraulic parameters. To this end, my algorithm links the low- and high-resolution geophysical data via a downscaling procedure before relating the downscaled regional-scale geophysical data to the high-resolution hydraulic parameter field. I first illustrate the application of this novel data integration approach to a realistic synthetic database consisting of collocated high-resolution borehole measurements of the hydraulic and electrical conductivities and spatially exhaustive, low-resolution electrical conductivity estimates obtained from electrical resistivity tomography (ERT). The overall viability of this method is tested and verified by performing and comparing flow and transport simulations through the original and simulated hydraulic conductivity fields. The corresponding results indicate that the proposed data integration procedure does indeed allow for obtaining faithful estimates of the larger-scale hydraulic conductivity structure and reliable predictions of the transport characteristics over medium- to regional-scale distances. The approach is then applied to a corresponding field scenario consisting of collocated high- resolution measurements of the electrical conductivity, as measured using a cone penetrometer testing (CPT) system, and the hydraulic conductivity, as estimated from electromagnetic flowmeter and slug test measurements, in combination with spatially exhaustive low-resolution electrical conductivity estimates obtained from surface-based electrical resistivity tomography (ERT). The corresponding results indicate that the newly developed data integration approach is indeed capable of adequately capturing both the small-scale heterogeneity as well as the larger-scale trend of the prevailing hydraulic conductivity field. The results also indicate that this novel data integration approach is remarkably flexible and robust and hence can be expected to be applicable to a wide range of geophysical and hydrological data at all scale ranges. In the second part of my thesis, I evaluate in detail the viability of sequential geostatistical resampling as a proposal mechanism for Markov Chain Monte Carlo (MCMC) methods applied to high-dimensional geophysical and hydrological inverse problems in order to allow for a more accurate and realistic quantification of the uncertainty associated with the thus inferred models. Focusing on a series of pertinent crosshole georadar tomographic examples, I investigated two classes of geostatistical resampling strategies with regard to their ability to efficiently and accurately generate independent realizations from the Bayesian posterior distribution. The corresponding results indicate that, despite its popularity, sequential resampling is rather inefficient at drawing independent posterior samples for realistic synthetic case studies, notably for the practically common and important scenario of pronounced spatial correlation between model parameters. To address this issue, I have developed a new gradual-deformation-based perturbation approach, which is flexible with regard to the number of model parameters as well as the perturbation strength. Compared to sequential resampling, this newly proposed approach was proven to be highly effective in decreasing the number of iterations required for drawing independent samples from the Bayesian posterior distribution.
Resumo:
In androdioecious metapopulations, where males co-occur with hermaphrodites, the absence of males from certain populations or regions may be explained by locally high selfing rates, high hermaphrodite outcross siring success (e.g. due to high pollen production by hermaphrodites), or to stochastic processes (e.g. the failure of males to invade populations or regions following colonization or range expansion by hermaphrodites). In the Iberian Peninsula and Morocco, the presence of males with hermaphrodites in the wind-pollinated androdioecious plant Mercurialis annua (Euphorbiaceae) varies both among populations within relatively small regions and among regions, with some regions lacking males from all populations. The species is known to have expanded its range into the Iberian Peninsula from a southern refugium. To account for variation in male presence in M. annua, we test the following hypotheses: (1) that males are absent in areas where plant densities are lower, because selfing rates should be correspondingly higher; (2) that males are absent in areas where hermaphrodites produce more pollen; and (3) that males are absent in areas where there is an elevated proportion of populations in which plant density and hermaphrodite pollen production disfavour their invasion. We found support for predictions two and three in Morocco (the putative Pleistocene refugium for M. annua) but no support for any hypothesis in Iberia (the expanded range). Our results are partially consistent with a hypothesis of sex-allocation equilibrium for populations in Morocco; in Iberia, the absence of males from large geographical regions is more consistent with a model of sex-ratio evolution in a metapopulation with recurrent population turnover. Our study points to the role of both frequency-dependent selection and contingencies imposed by colonization during range expansions and in metapopulations.
Resumo:
Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale for the purpose of improving predictions of groundwater flow and solute transport. However, extending corresponding approaches to the regional scale still represents one of the major challenges in the domain of hydrogeophysics. To address this problem, we have developed a regional-scale data integration methodology based on a two-step Bayesian sequential simulation approach. Our objective is to generate high-resolution stochastic realizations of the regional-scale hydraulic conductivity field in the common case where there exist spatially exhaustive but poorly resolved measurements of a related geophysical parameter, as well as highly resolved but spatially sparse collocated measurements of this geophysical parameter and the hydraulic conductivity. To integrate this multi-scale, multi-parameter database, we first link the low- and high-resolution geophysical data via a stochastic downscaling procedure. This is followed by relating the downscaled geophysical data to the high-resolution hydraulic conductivity distribution. After outlining the general methodology of the approach, we demonstrate its application to a realistic synthetic example where we consider as data high-resolution measurements of the hydraulic and electrical conductivities at a small number of borehole locations, as well as spatially exhaustive, low-resolution estimates of the electrical conductivity obtained from surface-based electrical resistivity tomography. The different stochastic realizations of the hydraulic conductivity field obtained using our procedure are validated by comparing their solute transport behaviour with that of the underlying ?true? hydraulic conductivity field. We find that, even in the presence of strong subsurface heterogeneity, our proposed procedure allows for the generation of faithful representations of the regional-scale hydraulic conductivity structure and reliable predictions of solute transport over long, regional-scale distances.
Resumo:
Species distribution models (SDMs) studies suggest that, without control measures, the distribution of many alien invasive plant species (AIS) will increase under climate and land-use changes. Due to limited resources and large areas colonised by invaders, management and monitoring resources must be prioritised. Choices depend on the conservation value of the invaded areas and can be guided by SDM predictions. Here, we use a hierarchical SDM framework, complemented by connectivity analysis of AIS distributions, to evaluate current and future conflicts between AIS and high conservation value areas. We illustrate the framework with three Australian wattle (Acacia) species and patterns of conservation value in Northern Portugal. Results show that protected areas will likely suffer higher pressure from all three Acacia species under future climatic conditions. Due to this higher predicted conflict in protected areas, management might be prioritised for Acacia dealbata and Acacia melanoxylon. Connectivity of AIS suitable areas inside protected areas is currently lower than across the full study area, but this would change under future environmental conditions. Coupled SDM and connectivity analysis can support resource prioritisation for anticipation and monitoring of AIS impacts. However, further tests of this framework over a wide range of regions and organisms are still required before wide application.
Resumo:
OBJECTIVES: Comparison of doxorubicin uptake, leakage and spatial regional blood flow, and drug distribution was made for antegrade, retrograde, combined antegrade and retrograde isolated lung perfusion, and pulmonary artery infusion by endovascular inflow occlusion (blood flow occlusion), as opposed to intravenous administration in a porcine model. METHODS: White pigs underwent single-pass lung perfusion with doxorubicin (320 mug/mL), labeled 99mTc-microspheres, and Indian ink. Visual assessment of the ink distribution and perfusion scintigraphy of the perfused lung was performed. 99mTc activity and doxorubicin levels were measured by gamma counting and high-performance liquid chromatography on 15 tissue samples from each perfused lung at predetermined localizations. RESULTS: Overall doxorubicin uptake in the perfused lung was significantly higher (P = .001) and the plasma concentration was significantly lower (P < .0001) after all isolated lung perfusion techniques, compared with intravenous administration, without differences between them. Pulmonary artery infusion (blood flow occlusion) showed an equally high doxorubicin uptake in the perfused lung but a higher systemic leakage than surgical isolated lung perfusion (P < .0001). The geometric coefficients of variation of the doxorubicin lung tissue levels were 175%, 279%, 226%, and 151% for antegrade, retrograde, combined antegrade and retrograde isolated lung perfusion, and pulmonary artery infusion by endovascular inflow occlusion (blood flow occlusion), respectively, compared with 51% for intravenous administration (P = .09). 99mTc activity measurements of the samples paralleled the doxorubicin level measurements, indicating a trend to a more heterogeneous spatial regional blood flow and drug distribution after isolated lung perfusion and blood flow occlusion compared with intravenous administration. CONCLUSIONS: Cytostatic lung perfusion results in a high overall doxorubicin uptake, which is, however, heterogeneously distributed within the perfused lung.
Resumo:
BACKGROUND: Data for trends in glycaemia and diabetes prevalence are needed to understand the effects of diet and lifestyle within populations, assess the performance of interventions, and plan health services. No consistent and comparable global analysis of trends has been done. We estimated trends and their uncertainties in mean fasting plasma glucose (FPG) and diabetes prevalence for adults aged 25 years and older in 199 countries and territories. METHODS: We obtained data from health examination surveys and epidemiological studies (370 country-years and 2·7 million participants). We converted systematically between different glycaemic metrics. For each sex, we used a Bayesian hierarchical model to estimate mean FPG and its uncertainty by age, country, and year, accounting for whether a study was nationally, subnationally, or community representative. FINDINGS: In 2008, global age-standardised mean FPG was 5·50 mmol/L (95% uncertainty interval 5·37-5·63) for men and 5·42 mmol/L (5·29-5·54) for women, having risen by 0·07 mmol/L and 0·09 mmol/L per decade, respectively. Age-standardised adult diabetes prevalence was 9·8% (8·6-11·2) in men and 9·2% (8·0-10·5) in women in 2008, up from 8·3% (6·5-10·4) and 7·5% (5·8-9·6) in 1980. The number of people with diabetes increased from 153 (127-182) million in 1980, to 347 (314-382) million in 2008. We recorded almost no change in mean FPG in east and southeast Asia and central and eastern Europe. Oceania had the largest rise, and the highest mean FPG (6·09 mmol/L, 5·73-6·49 for men; 6·08 mmol/L, 5·72-6·46 for women) and diabetes prevalence (15·5%, 11·6-20·1 for men; and 15·9%, 12·1-20·5 for women) in 2008. Mean FPG and diabetes prevalence in 2008 were also high in south Asia, Latin America and the Caribbean, and central Asia, north Africa, and the Middle East. Mean FPG in 2008 was lowest in sub-Saharan Africa, east and southeast Asia, and high-income Asia-Pacific. In high-income subregions, western Europe had the smallest rise, 0·07 mmol/L per decade for men and 0·03 mmol/L per decade for women; North America had the largest rise, 0·18 mmol/L per decade for men and 0·14 mmol/L per decade for women. INTERPRETATION: Glycaemia and diabetes are rising globally, driven both by population growth and ageing and by increasing age-specific prevalences. Effective preventive interventions are needed, and health systems should prepare to detect and manage diabetes and its sequelae. FUNDING: Bill & Melinda Gates Foundation and WHO.
Resumo:
Every year, debris flows cause huge damage in mountainous areas. Due to population pressure in hazardous zones, the socio-economic impact is much higher than in the past. Therefore, the development of indicative susceptibility hazard maps is of primary importance, particularly in developing countries. However, the complexity of the phenomenon and the variability of local controlling factors limit the use of processbased models for a first assessment. A debris flow model has been developed for regional susceptibility assessments using digital elevation model (DEM) with a GIS-based approach.. The automatic identification of source areas and the estimation of debris flow spreading, based on GIS tools, provide a substantial basis for a preliminary susceptibility assessment at a regional scale. One of the main advantages of this model is its workability. In fact, everything is open to the user, from the data choice to the selection of the algorithms and their parameters. The Flow-R model was tested in three different contexts: two in Switzerland and one in Pakistan, for indicative susceptibility hazard mapping. It was shown that the quality of the DEM is the most important parameter to obtain reliable results for propagation, but also to identify the potential debris flows sources.
Resumo:
Many studies show strong variation of health consumption between regions, suggesting that theses variations are related to the uncertainty of medical practice or to other factors related to health services or patients attitude. However the statistical interpretation of these variations is far from easy: apart from usual and specific information bias, there are statistical problems when observing incidence of events like health care consumption: it is in fact a rare event, which is observed within small population, and among regions with unequal number of person. Therefore, most of the variation reported might be well explained by a purely statistical phenomenon. This paper presents some aspects of this variability for three common indicators of variation, and suggest the use of ad hoc simulation to get statistical criteria.
Resumo:
The observation of non-random phylogenetic distribution of traits in communities provides evidence for niche-based community assembly. Environment may influence the phylogenetic structure of communities because traits determining how species respond to prevailing conditions can be phylogenetically conserved. In this study, we investigate the variation of butterfly species richness and of phylogenetic - and -diversities along temperature and plant species richness gradients. Our study indicates that butterfly richness is independently positively correlated to temperature and plant species richness in the study area. However, the variation of phylogenetic - and -diversities is only correlated to temperature. The significant phylogenetic clustering at high elevation suggests that cold temperature filters butterfly lineages, leading to communities mostly composed of closely related species adapted to those climatic conditions. These results suggest that in colder and more severe conditions at high elevations deterministic processes and not purely stochastic events drive the assemblage of butterfly communities.
Resumo:
Language is typically a function of the left hemisphere but the right hemisphere is also essential in some healthy individuals and patients. This inter-subject variability necessitates the localization of language function, at the individual level, prior to neurosurgical intervention. Such assessments are typically made by comparing left and right hemisphere language function to determine "language lateralization" using clinical tests or fMRI. Here, we show that language function needs to be assessed at the region and hemisphere specific level, because laterality measures can be misleading. Using fMRI data from 82 healthy participants, we investigated the degree to which activation for a semantic word matching task was lateralized in 50 different brain regions and across the entire cortex. This revealed two novel findings. First, the degree to which language is lateralized across brain regions and between subjects was primarily driven by differences in right hemisphere activation rather than differences in left hemisphere activation. Second, we found that healthy subjects who have relatively high left lateralization in the angular gyrus also have relatively low left lateralization in the ventral precentral gyrus. These findings illustrate spatial heterogeneity in language lateralization that is lost when global laterality measures are considered. It is likely that the complex spatial variability we observed in healthy controls is more exaggerated in patients with brain damage. We therefore highlight the importance of investigating within hemisphere regional variations in fMRI activation, prior to neuro-surgical intervention, to determine how each hemisphere and each region contributes to language processing. Hum Brain Mapp, 2010. © 2010 Wiley-Liss, Inc.