32 resultados para ranking-menetelmä
Resumo:
This thesis contains three parts. The first one offers the theoretical basement, where the history of the police from their beginning in the early 19th century to this day is shown. The emphasis however is laid on the last 40 years, which gave birth to a multitude of innovations, such as community, problem-oriented, hot-spots or zero-tolerance policing. Those innovations are described in detail and are critically commented. At the end of this section, I present a scheme, where all the approaches are classified as strategic or methodic innovations, but united under a model called "modern policing". The fact that the innovations are not competitive but rather complementary is the most important finding of this examination. The second part of this work deals with a unique survey about the implementation of four innovations and eight problem- and community-oriented activities in 85 Swiss police forces. This explorative study shows that in the last 15 years the Swiss police forces have increasingly adopted innovative approaches. The most frequent innovation is community policing, which has been implemented all over the country. Due to the results, we can also assume that the implementation of the innovations is mostly substantial and profound. However, particularly in the area of problem-solving there is still a need for improvements. The third section consists of a scientific evaluation of a temporary special unit of the municipal police Zurich, which, during nine months, fought against public drug dealing and illegal prostitution in a particular neighborhood called Langstrasse. The effects of this hot-spot project were measured with police data, observations and several population surveys. In general, the special unit achieved a positive outcome and helped to defuse the hot-spot. Additionally, a survey conducted within the police department showed that the personal attitude towards the special unit differed widely between the policemen. We found significant differences between both police regions East and West, rank-and-file and higher ranking officers, different ages and the personal connection to the special unit. In fact, the higher the rank, the lower the age, and the closer the relationship, the more positive the officers were towards the unit.
Resumo:
The aim of this paper is to measure and to correct for the potential incomparability of responses to the SHARE survey on health care responsiveness. A parametric approach based on the use of anchoring vignettes is applied to cross-sectional data (2006-2007) in eleven European countries. More than 7,000 respondents aged 50 years old and over were asked to assess the quality of health care responsiveness in three domains: waiting time for medical treatment, quality of the conditions in visited health facilities, and communication and involvement in decisions about the treatment. Our results suggest that there is reporting heterogeneity across countries and across individuals within countries, and the degree of heterogeneity varies with the health care domain. Although leading countries in terms of health care responsiveness remain among the most successful even after correction for reporting heterogeneity, one may acknowledge many shifts in the ranking of the other countries.
Resumo:
Molecular shape has long been known to be an important property for the process of molecular recognition. Previous studies postulated the existence of a drug-like shape space that could be used to artificially bias the composition of screening libraries, with the aim to increase the chance of success in Hit Identification. In this work, it was analysed to which extend this assumption holds true. Normalized Principal Moments of Inertia Ratios (NPRs) have been used to describe the molecular shape of small molecules. It was investigated, whether active molecules of diverse targets are located in preferred subspaces of the NPR shape space. Results illustrated a significantly stronger clustering than could be expected by chance, with parts of the space unlikely to be occupied by active compounds. Furthermore, a strong enrichment of elongated, rather flat shapes could be observed, while globular compounds were highly underrepresented. This was confirmed for a wide range of small molecule datasets from different origins. Active compounds exhibited a high overlap in their shape distributions across different targets, making a purely shape based discrimination very difficult. An additional perspective was provided by comparing the shapes of protein binding pockets with those of their respective ligands. Although more globular than their ligands, it was observed that binding sites shapes exhibited a similarly skewed distribution in shape space: spherical shapes were highly underrepresented. This was different for unoccupied binding pockets of smaller size. These were on the contrary identified to possess a more globular shape. The relation between shape complementarity and exhibited bioactivity was analysed; a moderate correlation between bioactivity and parameters including pocket coverage, distance in shape space, and others could be identified, which reflects the importance of shape complementarity. However, this also suggests that other aspects are of relevance for molecular recognition. A subsequent analysis assessed if and how shape and volume information retrieved from pocket or respective reference ligands could be used as a pre-filter in a virtual screening approach. ln Lead Optimization compounds need to get optimized with respect to a variety of pararneters. Here, the availability of past success stories is very valuable, as they can guide medicinal chemists during their analogue synthesis plans. However, although of tremendous interest for the public domain, so far only large corporations had the ability to mine historical knowledge in their proprietary databases. With the aim to provide such information, the SwissBioisostere database was developed and released during this thesis. This database contains information on 21,293,355 performed substructural exchanges, corresponding to 5,586,462 unique replacements that have been measured in 35,039 assays against 1,948 molecular targets representing 30 target classes, and on their impact on bioactivity . A user-friendly interface was developed that provides facile access to these data and is accessible at http//www.swissbioisostere.ch. The ChEMBL database was used as primary data source of bioactivity information. Matched molecular pairs have been identified in the extracted and cleaned data. Success-based scores were developed and integrated into the database to allow re-ranking of proposed replacements by their past outcomes. It was analysed to which degree these scores correlate with chemical similarity of the underlying fragments. An unexpectedly weak relationship was detected and further investigated. Use cases of this database were envisioned, and functionalities implemented accordingly: replacement outcomes are aggregatable at the assay level, and it was shawn that an aggregation at the target or target class level could also be performed, but should be accompanied by a careful case-by-case assessment. It was furthermore observed that replacement success depends on the activity of the starting compound A within a matched molecular pair A-B. With increasing potency the probability to lose bioactivity through any substructural exchange was significantly higher than in low affine binders. A potential existence of a publication bias could be refuted. Furthermore, often performed medicinal chemistry strategies for structure-activity-relationship exploration were analysed using the acquired data. Finally, data originating from pharmaceutical companies were compared with those reported in the literature. It could be seen that industrial medicinal chemistry can access replacement information not available in the public domain. In contrast, a large amount of often-performed replacements within companies could also be identified in literature data. Preferences for particular replacements differed between these two sources. The value of combining different endpoints in an evaluation of molecular replacements was investigated. The performed studies highlighted furthermore that there seem to exist no universal substructural replacement that always retains bioactivity irrespective of the biological environment. A generalization of bioisosteric replacements seems therefore not possible. - La forme tridimensionnelle des molécules a depuis longtemps été reconnue comme une propriété importante pour le processus de reconnaissance moléculaire. Des études antérieures ont postulé que les médicaments occupent préférentiellement un sous-ensemble de l'espace des formes des molécules. Ce sous-ensemble pourrait être utilisé pour biaiser la composition de chimiothèques à cribler, dans le but d'augmenter les chances d'identifier des Hits. L'analyse et la validation de cette assertion fait l'objet de cette première partie. Les Ratios de Moments Principaux d'Inertie Normalisés (RPN) ont été utilisés pour décrire la forme tridimensionnelle de petites molécules de type médicament. Il a été étudié si les molécules actives sur des cibles différentes se co-localisaient dans des sous-espaces privilégiés de l'espace des formes. Les résultats montrent des regroupements de molécules incompatibles avec une répartition aléatoire, avec certaines parties de l'espace peu susceptibles d'être occupées par des composés actifs. Par ailleurs, un fort enrichissement en formes allongées et plutôt plates a pu être observé, tandis que les composés globulaires étaient fortement sous-représentés. Cela a été confirmé pour un large ensemble de compilations de molécules d'origines différentes. Les distributions de forme des molécules actives sur des cibles différentes se recoupent largement, rendant une discrimination fondée uniquement sur la forme très difficile. Une perspective supplémentaire a été ajoutée par la comparaison des formes des ligands avec celles de leurs sites de liaison (poches) dans leurs protéines respectives. Bien que plus globulaires que leurs ligands, il a été observé que les formes des poches présentent une distribution dans l'espace des formes avec le même type d'asymétrie que celle observée pour les ligands: les formes sphériques sont fortement sous représentées. Un résultat différent a été obtenu pour les poches de plus petite taille et cristallisées sans ligand: elles possédaient une forme plus globulaire. La relation entre complémentarité de forme et bioactivité a été également analysée; une corrélation modérée entre bioactivité et des paramètres tels que remplissage de poche, distance dans l'espace des formes, ainsi que d'autres, a pu être identifiée. Ceci reflète l'importance de la complémentarité des formes, mais aussi l'implication d'autres facteurs. Une analyse ultérieure a évalué si et comment la forme et le volume d'une poche ou de ses ligands de référence pouvaient être utilisés comme un pré-filtre dans une approche de criblage virtuel. Durant l'optimisation d'un Lead, de nombreux paramètres doivent être optimisés simultanément. Dans ce contexte, la disponibilité d'exemples d'optimisations réussies est précieuse, car ils peuvent orienter les chimistes médicinaux dans leurs plans de synthèse par analogie. Cependant, bien que d'un extrême intérêt pour les chercheurs dans le domaine public, seules les grandes sociétés pharmaceutiques avaient jusqu'à présent la capacité d'exploiter de telles connaissances au sein de leurs bases de données internes. Dans le but de remédier à cette limitation, la base de données SwissBioisostere a été élaborée et publiée dans le domaine public au cours de cette thèse. Cette base de données contient des informations sur 21 293 355 échanges sous-structuraux observés, correspondant à 5 586 462 remplacements uniques mesurés dans 35 039 tests contre 1948 cibles représentant 30 familles, ainsi que sur leur impact sur la bioactivité. Une interface a été développée pour permettre un accès facile à ces données, accessible à http:/ /www.swissbioisostere.ch. La base de données ChEMBL a été utilisée comme source de données de bioactivité. Une version modifiée de l'algorithme de Hussain et Rea a été implémentée pour identifier les Matched Molecular Pairs (MMP) dans les données préparées au préalable. Des scores de succès ont été développés et intégrés dans la base de données pour permettre un reclassement des remplacements proposés selon leurs résultats précédemment observés. La corrélation entre ces scores et la similarité chimique des fragments correspondants a été étudiée. Une corrélation plus faible qu'attendue a été détectée et analysée. Différents cas d'utilisation de cette base de données ont été envisagés, et les fonctionnalités correspondantes implémentées: l'agrégation des résultats de remplacement est effectuée au niveau de chaque test, et il a été montré qu'elle pourrait également être effectuée au niveau de la cible ou de la classe de cible, sous réserve d'une analyse au cas par cas. Il a en outre été constaté que le succès d'un remplacement dépend de l'activité du composé A au sein d'une paire A-B. Il a été montré que la probabilité de perdre la bioactivité à la suite d'un remplacement moléculaire quelconque est plus importante au sein des molécules les plus actives que chez les molécules de plus faible activité. L'existence potentielle d'un biais lié au processus de publication par articles a pu être réfutée. En outre, les stratégies fréquentes de chimie médicinale pour l'exploration des relations structure-activité ont été analysées à l'aide des données acquises. Enfin, les données provenant des compagnies pharmaceutiques ont été comparées à celles reportées dans la littérature. Il a pu être constaté que les chimistes médicinaux dans l'industrie peuvent accéder à des remplacements qui ne sont pas disponibles dans le domaine public. Par contre, un grand nombre de remplacements fréquemment observés dans les données de l'industrie ont également pu être identifiés dans les données de la littérature. Les préférences pour certains remplacements particuliers diffèrent entre ces deux sources. L'intérêt d'évaluer les remplacements moléculaires simultanément selon plusieurs paramètres (bioactivité et stabilité métabolique par ex.) a aussi été étudié. Les études réalisées ont souligné qu'il semble n'exister aucun remplacement sous-structural universel qui conserve toujours la bioactivité quel que soit le contexte biologique. Une généralisation des remplacements bioisostériques ne semble donc pas possible.
Resumo:
Résumé Suite aux recentes avancées technologiques, les archives d'images digitales ont connu une croissance qualitative et quantitative sans précédent. Malgré les énormes possibilités qu'elles offrent, ces avancées posent de nouvelles questions quant au traitement des masses de données saisies. Cette question est à la base de cette Thèse: les problèmes de traitement d'information digitale à très haute résolution spatiale et/ou spectrale y sont considérés en recourant à des approches d'apprentissage statistique, les méthodes à noyau. Cette Thèse étudie des problèmes de classification d'images, c'est à dire de catégorisation de pixels en un nombre réduit de classes refletant les propriétés spectrales et contextuelles des objets qu'elles représentent. L'accent est mis sur l'efficience des algorithmes, ainsi que sur leur simplicité, de manière à augmenter leur potentiel d'implementation pour les utilisateurs. De plus, le défi de cette Thèse est de rester proche des problèmes concrets des utilisateurs d'images satellite sans pour autant perdre de vue l'intéret des méthodes proposées pour le milieu du machine learning dont elles sont issues. En ce sens, ce travail joue la carte de la transdisciplinarité en maintenant un lien fort entre les deux sciences dans tous les développements proposés. Quatre modèles sont proposés: le premier répond au problème de la haute dimensionalité et de la redondance des données par un modèle optimisant les performances en classification en s'adaptant aux particularités de l'image. Ceci est rendu possible par un système de ranking des variables (les bandes) qui est optimisé en même temps que le modèle de base: ce faisant, seules les variables importantes pour résoudre le problème sont utilisées par le classifieur. Le manque d'information étiquétée et l'incertitude quant à sa pertinence pour le problème sont à la source des deux modèles suivants, basés respectivement sur l'apprentissage actif et les méthodes semi-supervisées: le premier permet d'améliorer la qualité d'un ensemble d'entraînement par interaction directe entre l'utilisateur et la machine, alors que le deuxième utilise les pixels non étiquetés pour améliorer la description des données disponibles et la robustesse du modèle. Enfin, le dernier modèle proposé considère la question plus théorique de la structure entre les outputs: l'intègration de cette source d'information, jusqu'à présent jamais considérée en télédétection, ouvre des nouveaux défis de recherche. Advanced kernel methods for remote sensing image classification Devis Tuia Institut de Géomatique et d'Analyse du Risque September 2009 Abstract The technical developments in recent years have brought the quantity and quality of digital information to an unprecedented level, as enormous archives of satellite images are available to the users. However, even if these advances open more and more possibilities in the use of digital imagery, they also rise several problems of storage and treatment. The latter is considered in this Thesis: the processing of very high spatial and spectral resolution images is treated with approaches based on data-driven algorithms relying on kernel methods. In particular, the problem of image classification, i.e. the categorization of the image's pixels into a reduced number of classes reflecting spectral and contextual properties, is studied through the different models presented. The accent is put on algorithmic efficiency and the simplicity of the approaches proposed, to avoid too complex models that would not be used by users. The major challenge of the Thesis is to remain close to concrete remote sensing problems, without losing the methodological interest from the machine learning viewpoint: in this sense, this work aims at building a bridge between the machine learning and remote sensing communities and all the models proposed have been developed keeping in mind the need for such a synergy. Four models are proposed: first, an adaptive model learning the relevant image features has been proposed to solve the problem of high dimensionality and collinearity of the image features. This model provides automatically an accurate classifier and a ranking of the relevance of the single features. The scarcity and unreliability of labeled. information were the common root of the second and third models proposed: when confronted to such problems, the user can either construct the labeled set iteratively by direct interaction with the machine or use the unlabeled data to increase robustness and quality of the description of data. Both solutions have been explored resulting into two methodological contributions, based respectively on active learning and semisupervised learning. Finally, the more theoretical issue of structured outputs has been considered in the last model, which, by integrating outputs similarity into a model, opens new challenges and opportunities for remote sensing image processing.
Resumo:
In this paper we propose an innovative methodology for automated profiling of illicit tablets bytheir surface granularity; a feature previously unexamined for this purpose. We make use of the tinyinconsistencies at the tablet surface, referred to as speckles, to generate a quantitative granularity profileof tablets. Euclidian distance is used as a measurement of (dis)similarity between granularity profiles.The frequency of observed distances is then modelled by kernel density estimation in order to generalizethe observations and to calculate likelihood ratios (LRs). The resulting LRs are used to evaluate thepotential of granularity profiles to differentiate between same-batch and different-batches tablets.Furthermore, we use the LRs as a similarity metric to refine database queries. We are able to derivereliable LRs within a scope that represent the true evidential value of the granularity feature. Thesemetrics are used to refine candidate hit-lists form a database containing physical features of illicittablets. We observe improved or identical ranking of candidate tablets in 87.5% of cases when granularityis considered.
Resumo:
PURPOSE: The objective of this study was to investigate the effects of weather, rank, and home advantage on international football match results and scores in the Gulf Cooperation Council (GCC) region. METHODS: Football matches (n = 2008) in six GCC countries were analyzed. To determine the weather influence on the likelihood of favorable outcome and goal difference, generalized linear model with a logit link function and multiple regression analysis were performed. RESULTS: In the GCC region, home teams tend to have greater likelihood of a favorable outcome (P < 0.001) and higher goal difference (P < 0.001). Temperature difference was identified as a significant explanatory variable when used independently (P < 0.001) or after adjustment for home advantage and team ranking (P < 0.001). The likelihood of favorable outcome for GCC teams increases by 3% for every 1-unit increase in temperature difference. After inclusion of interaction with opposition, this advantage remains significant only when playing against non-GCC opponents. While home advantage increased the odds of favorable outcome (P < 0.001) and goal difference (P < 0.001) after inclusion of interaction term, the likelihood of favorable outcome for a GCC team decreased (P < 0.001) when playing against a stronger opponent. Finally, the temperature and wet bulb globe temperature approximation were found as better indicators of the effect of environmental conditions than absolute and relative humidity or heat index on match outcomes. CONCLUSIONS: In GCC region, higher temperature increased the likelihood of a favorable outcome when playing against non-GCC teams. However, international ranking should be considered because an opponent with a higher rank reduced, but did not eliminate, the likelihood of a favorable outcome.
Resumo:
The focus of my PhD research was the concept of modularity. In the last 15 years, modularity has become a classic term in different fields of biology. On the conceptual level, a module is a set of interacting elements that remain mostly independent from the elements outside of the module. I used modular analysis techniques to study gene expression evolution in vertebrates. In particular, I identified ``natural'' modules of gene expression in mouse and human, and I showed that expression of organ-specific and system-specific genes tends to be conserved between such distance vertebrates as mammals and fishes. Also with a modular approach, I studied patterns of developmental constraints on transcriptome evolution. I showed that none of the two commonly accepted models of the evolution of embryonic development (``evo-devo'') are exclusively valid. In particular, I found that the conservation of the sequences of regulatory regions is highest during mid-development of zebrafish, and thus it supports the ``hourglass model''. In contrast, events of gene duplication and new gene introduction are most rare in early development, which supports the ``early conservation model''. In addition to the biological insights on transcriptome evolution, I have also discussed in detail the advantages of modular approaches in large-scale data analysis. Moreover, I re-analyzed several studies (published in high-ranking journals), and showed that their conclusions do not hold out under a detailed analysis. This demonstrates that complex analysis of high-throughput data requires a co-operation between biologists, bioinformaticians, and statisticians.
Resumo:
BACKGROUND AND PURPOSE: Several prognostic scores have been developed to predict the risk of symptomatic intracranial hemorrhage (sICH) after ischemic stroke thrombolysis. We compared the performance of these scores in a multicenter cohort. METHODS: We merged prospectively collected data of patients with consecutive ischemic stroke who received intravenous thrombolysis in 7 stroke centers. We identified and evaluated 6 scores that can provide an estimate of the risk of sICH in hyperacute settings: MSS (Multicenter Stroke Survey); HAT (Hemorrhage After Thrombolysis); SEDAN (blood sugar, early infarct signs, [hyper]dense cerebral artery sign, age, NIH Stroke Scale); GRASPS (glucose at presentation, race [Asian], age, sex [male], systolic blood pressure at presentation, and severity of stroke at presentation [NIH Stroke Scale]); SITS (Safe Implementation of Thrombolysis in Stroke); and SPAN (stroke prognostication using age and NIH Stroke Scale)-100 positive index. We included only patients with available variables for all scores. We calculated the area under the receiver operating characteristic curve (AUC-ROC) and also performed logistic regression and the Hosmer-Lemeshow test. RESULTS: The final cohort comprised 3012 eligible patients, of whom 221 (7.3%) had sICH per National Institute of Neurological Disorders and Stroke, 141 (4.7%) per European Cooperative Acute Stroke Study II, and 86 (2.9%) per Safe Implementation of Thrombolysis in Stroke criteria. The performance of the scores assessed with AUC-ROC for predicting European Cooperative Acute Stroke Study II sICH was: MSS, 0.63 (95% confidence interval, 0.58-0.68); HAT, 0.65 (0.60-0.70); SEDAN, 0.70 (0.66-0.73); GRASPS, 0.67 (0.62-0.72); SITS, 0.64 (0.59-0.69); and SPAN-100 positive index, 0.56 (0.50-0.61). SEDAN had significantly higher AUC-ROC values compared with all other scores, except for GRASPS where the difference was nonsignificant. SPAN-100 performed significantly worse compared with other scores. The discriminative ranking of the scores was the same for the National Institute of Neurological Disorders and Stroke, and Safe Implementation of Thrombolysis in Stroke definitions, with SEDAN performing best, GRASPS second, and SPAN-100 worst. CONCLUSIONS: SPAN-100 had the worst predictive power, and SEDAN constantly the highest predictive power. However, none of the scores had better than moderate performance.
Resumo:
It is unclear how physical attributes influence tennis-specific performance in teenage players. The aims of this study were (a) to examine the relationships between speed, explosive power, leg stiffness, and muscular strength of upper and lower limbs; and (b) to determine to what extent these physical qualities relate to tournament play performance in a group of competitive teenage tennis players. A total of 12 male players aged 13.6 +/- 1.4 years performed a series of physical tests: a 5-m, 10-m, and 20-m sprint; squat jump (SJ); countermovement jump (CMJ); drop jump (DJ); multi-rebound jumps; maximum voluntary contraction of isometric grip strength; and plantar flexor of the dominant and nondominant side. Speed (r = 0.69, 0.63, and 0.74 for 5-, 10-, and 20-m sprints, respectively), vertical power abilities (r = -0.71, -0.80 and -0.66 for SJ, CMJ, and DJ, respectively), and maximal strength in the dominant side (r = -0.67 and -0.73 for handgrip and plantar flexor, respectively) were significantly correlated with tennis performance. However, strength in the nondominant side (r = -0.29 and -0.42 for handgrip and plantar flexor) and leg stiffness (r = -0.15) were not correlated with the performance ranking of the players. It seems that physical attributes have a strong influence on tennis performance in this age group and that an important asymmetry is already observed. By monitoring regularly such physical abilities during puberty, the conditioning coach can modify a program to compensate for the imbalances. This would in turn minimize the risks of injuries during this critical period.
Resumo:
We tested for interactions between body mass index (BMI) and common genetic variants affecting serum urate levels, genome-wide, in up to 42569 participants. Both stratified genome-wide association (GWAS) analyses, in lean, overweight and obese individuals, and regression-type analyses in a non BMI-stratified overall sample were performed. The former did not uncover any novel locus with a major main effect, but supported modulation of effects for some known and potentially new urate loci. The latter highlighted a SNP at RBFOX3 reaching genome-wide significant level (effect size 0.014, 95% CI 0.008-0.02, Pinter= 2.6 x 10-8). Two top loci in interaction term analyses, RBFOX3 and ERO1LB-EDARADD, also displayed suggestive differences in main effect size between the lean and obese strata. All top ranking loci for urate effect differences between BMI categories were novel and most had small magnitude but opposite direction effects between strata. They include the locus RBMS1-TANK (men, Pdifflean-overweight= 4.7 x 10-8), a region that has been associated with several obesity related traits, and TSPYL5 (men, Pdifflean-overweight= 9.1 x 10-8), regulating adipocytes-produced estradiol. The top-ranking known urate loci was ABCG2, the strongest known gout risk locus, with an effect halved in obese compared to lean men (Pdifflean-obese= 2 x 10-4). Finally, pathway analysis suggested a role for N-glycan biosynthesis as a prominent urate-associated pathway in the lean stratum. These results illustrate a potentially powerful way to monitor changes occurring in obesogenic environment.
Resumo:
OBJECTIVE: Routinely collected health data, collected for administrative and clinical purposes, without specific a priori research questions, are increasingly used for observational, comparative effectiveness, health services research, and clinical trials. The rapid evolution and availability of routinely collected data for research has brought to light specific issues not addressed by existing reporting guidelines. The aim of the present project was to determine the priorities of stakeholders in order to guide the development of the REporting of studies Conducted using Observational Routinely-collected health Data (RECORD) statement. METHODS: Two modified electronic Delphi surveys were sent to stakeholders. The first determined themes deemed important to include in the RECORD statement, and was analyzed using qualitative methods. The second determined quantitative prioritization of the themes based on categorization of manuscript headings. The surveys were followed by a meeting of RECORD working committee, and re-engagement with stakeholders via an online commentary period. RESULTS: The qualitative survey (76 responses of 123 surveys sent) generated 10 overarching themes and 13 themes derived from existing STROBE categories. Highest-rated overall items for inclusion were: Disease/exposure identification algorithms; Characteristics of the population included in databases; and Characteristics of the data. In the quantitative survey (71 responses of 135 sent), the importance assigned to each of the compiled themes varied depending on the manuscript section to which they were assigned. Following the working committee meeting, online ranking by stakeholders provided feedback and resulted in revision of the final checklist. CONCLUSIONS: The RECORD statement incorporated the suggestions provided by a large, diverse group of stakeholders to create a reporting checklist specific to observational research using routinely collected health data. Our findings point to unique aspects of studies conducted with routinely collected health data and the perceived need for better reporting of methodological issues.
Resumo:
Aim: Modelling species at the assemblage level is required to make effective forecast of global change impacts on diversity and ecosystem functioning. Community predictions may be achieved using macroecological properties of communities (MEM), or by stacking of individual species distribution models (S-SDMs). To obtain more realistic predictions of species assemblages, the SESAM framework suggests applying successive filters to the initial species source pool, by combining different modelling approaches and rules. Here we provide a first test of this framework in mountain grassland communities. Location: The western Swiss Alps. Methods: Two implementations of the SESAM framework were tested: a "Probability ranking" rule based on species richness predictions and rough probabilities from SDMs, and a "Trait range" rule that uses the predicted upper and lower bound of community-level distribution of three different functional traits (vegetative height, specific leaf area and seed mass) to constraint a pool of environmentally filtered species from binary SDMs predictions. Results: We showed that all independent constraints expectedly contributed to reduce species richness overprediction. Only the "Probability ranking" rule allowed slightly but significantly improving predictions of community composition. Main conclusion: We tested various ways to implement the SESAM framework by integrating macroecological constraints into S-SDM predictions, and report one that is able to improve compositional predictions. We discuss possible improvements, such as further improving the causality and precision of environmental predictors, using other assembly rules and testing other types of ecological or functional constraints.
Resumo:
Educational institutions are considered a keystone for the establishment of a meritocratic society. They supposedly serve two functions: an educational function that promotes learning for all, and a selection function that sorts individuals into different programs, and ultimately social positions, based on individual merit. We study how the function of selection relates to support for assessment practices known to harm vs. benefit lower status students, through the perceived justice principles underlying these practices. We study two assessment practices: normative assessment-focused on ranking and social comparison, known to hinder the success of lower status students-and formative assessment-focused on learning and improvement, known to benefit lower status students. Normative assessment is usually perceived as relying on an equity principle, with rewards being allocated based on merit and should thus appear as positively associated with the function of selection. Formative assessment is usually perceived as relying on corrective justice that aims to ensure equality of outcomes by considering students' needs, which makes it less suitable for the function of selection. A questionnaire measuring these constructs was administered to university students. Results showed that believing that education is intended to select the best students positively predicts support for normative assessment, through increased perception of its reliance on equity, and negatively predicts support for formative assessment, through reduced perception of its ability to establish corrective justice. This study suggests that the belief in the function of selection as inherent to educational institutions can contribute to the reproduction of social inequalities by preventing change from assessment practices known to disadvantage lowerstatus student, namely normative assessment, to more favorable practices, namely formative assessment, and by promoting matching beliefs in justice principles.
Resumo:
We manipulate distributive justice rules of demographic quotas in university selection. Results show that quotas involving students' need are preferred over equity and authority ranking quotas. International students also differentiate more between quotas than locals, preferring those advantaging them. This suggests that universities should consider students' need in their selection.
Resumo:
Aim The aim of this study was to test different modelling approaches, including a new framework, for predicting the spatial distribution of richness and composition of two insect groups. Location The western Swiss Alps. Methods We compared two community modelling approaches: the classical method of stacking binary prediction obtained fromindividual species distribution models (binary stacked species distribution models, bS-SDMs), and various implementations of a recent framework (spatially explicit species assemblage modelling, SESAM) based on four steps that integrate the different drivers of the assembly process in a unique modelling procedure. We used: (1) five methods to create bS-SDM predictions; (2) two approaches for predicting species richness, by summing individual SDM probabilities or by modelling the number of species (i.e. richness) directly; and (3) five different biotic rules based either on ranking probabilities from SDMs or on community co-occurrence patterns. Combining these various options resulted in 47 implementations for each taxon. Results Species richness of the two taxonomic groups was predicted with good accuracy overall, and in most cases bS-SDM did not produce a biased prediction exceeding the actual number of species in each unit. In the prediction of community composition bS-SDM often also yielded the best evaluation score. In the case of poor performance of bS-SDM (i.e. when bS-SDM overestimated the prediction of richness) the SESAM framework improved predictions of species composition. Main conclusions Our results differed from previous findings using community-level models. First, we show that overprediction of richness by bS-SDM is not a general rule, thus highlighting the relevance of producing good individual SDMs to capture the ecological filters that are important for the assembly process. Second, we confirm the potential of SESAM when richness is overpredicted by bS-SDM; limiting the number of species for each unit and applying biotic rules (here using the ranking of SDM probabilities) can improve predictions of species composition