19 resultados para raccomandazione e-learning privacy tecnica rule-based recommender suggerimento


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we consider active sampling to label pixels grouped with hierarchical clustering. The objective of the method is to match the data relationships discovered by the clustering algorithm with the user's desired class semantics. The first is represented as a complete tree to be pruned and the second is iteratively provided by the user. The active learning algorithm proposed searches the pruning of the tree that best matches the labels of the sampled points. By choosing the part of the tree to sample from according to current pruning's uncertainty, sampling is focused on most uncertain clusters. This way, large clusters for which the class membership is already fixed are no longer queried and sampling is focused on division of clusters showing mixed labels. The model is tested on a VHR image in a multiclass classification setting. The method clearly outperforms random sampling in a transductive setting, but cannot generalize to unseen data, since it aims at optimizing the classification of a given cluster structure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many species are able to learn to associate behaviours with rewards as this gives fitness advantages in changing environments. Social interactions between population members may, however, require more cognitive abilities than simple trial-and-error learning, in particular the capacity to make accurate hypotheses about the material payoff consequences of alternative action combinations. It is unclear in this context whether natural selection necessarily favours individuals to use information about payoffs associated with nontried actions (hypothetical payoffs), as opposed to simple reinforcement of realized payoff. Here, we develop an evolutionary model in which individuals are genetically determined to use either trial-and-error learning or learning based on hypothetical reinforcements, and ask what is the evolutionarily stable learning rule under pairwise symmetric two-action stochastic repeated games played over the individual's lifetime. We analyse through stochastic approximation theory and simulations the learning dynamics on the behavioural timescale, and derive conditions where trial-and-error learning outcompetes hypothetical reinforcement learning on the evolutionary timescale. This occurs in particular under repeated cooperative interactions with the same partner. By contrast, we find that hypothetical reinforcement learners tend to be favoured under random interactions, but stable polymorphisms can also obtain where trial-and-error learners are maintained at a low frequency. We conclude that specific game structures can select for trial-and-error learning even in the absence of costs of cognition, which illustrates that cost-free increased cognition can be counterselected under social interactions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a theoretical model to analyze the privacy issues around location based mobile business models. We report the results of an exploratory field experiment in Switzerland that assessed the factors driving user payoff in mobile business. We found that (1) the personal data disclosed has a negative effect on user payoff; (2) the amount of personalization available has a direct and positive effect, as well as a moderating effect on user payoff; (3) the amount of control over user's personal data has a direct and positive effect, as well as a moderating effect on user payoff. The results suggest that privacy protection could be the main value proposition in the B2C mobile market. From our theoretical model we derive a set of guidelines to design a privacy-friendly business model pattern for third-party services. We discuss four examples to show the mobile platform can play a key role in the implementation of these new business models.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we discuss the main privacy issues around mobile business models and we envision new solutions having privacy protection as a main value proposition. We construct a framework to help analyze the situation and assume that a third party is necessary to warrant transactions between mobile users and m-commerce providers. We then use the business model canvas to describe a generic business model pattern for privacy third party services. This pattern is then illustrated in two different variations of a privacy business model, which we call privacy broker and privacy management software. We conclude by giving examples for each business model and by suggesting further directions of investigation