28 resultados para quasi-least squares


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Counterfeit pharmaceutical products have become a widespread problem in the last decade. Various analytical techniques have been applied to discriminate between genuine and counterfeit products. Among these, Near-infrared (NIR) and Raman spectroscopy provided promising results.The present study offers a methodology allowing to provide more valuable information fororganisations engaged in the fight against counterfeiting of medicines.A database was established by analyzing counterfeits of a particular pharmaceutical product using Near-infrared (NIR) and Raman spectroscopy. Unsupervised chemometric techniques (i.e. principal component analysis - PCA and hierarchical cluster analysis - HCA) were implemented to identify the classes within the datasets. Gas Chromatography coupled to Mass Spectrometry (GC-MS) and Fourier Transform Infrared Spectroscopy (FT-IR) were used to determine the number of different chemical profiles within the counterfeits. A comparison with the classes established by NIR and Raman spectroscopy allowed to evaluate the discriminating power provided by these techniques. Supervised classifiers (i.e. k-Nearest Neighbors, Partial Least Squares Discriminant Analysis, Probabilistic Neural Networks and Counterpropagation Artificial Neural Networks) were applied on the acquired NIR and Raman spectra and the results were compared to the ones provided by the unsupervised classifiers.The retained strategy for routine applications, founded on the classes identified by NIR and Raman spectroscopy, uses a classification algorithm based on distance measures and Receiver Operating Characteristics (ROC) curves. The model is able to compare the spectrum of a new counterfeit with that of previously analyzed products and to determine if a new specimen belongs to one of the existing classes, consequently allowing to establish a link with other counterfeits of the database.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Time-lapse geophysical measurements are widely used to monitor the movement of water and solutes through the subsurface. Yet commonly used deterministic least squares inversions typically suffer from relatively poor mass recovery, spread overestimation, and limited ability to appropriately estimate nonlinear model uncertainty. We describe herein a novel inversion methodology designed to reconstruct the three-dimensional distribution of a tracer anomaly from geophysical data and provide consistent uncertainty estimates using Markov chain Monte Carlo simulation. Posterior sampling is made tractable by using a lower-dimensional model space related both to the Legendre moments of the plume and to predefined morphological constraints. Benchmark results using cross-hole ground-penetrating radar travel times measurements during two synthetic water tracer application experiments involving increasingly complex plume geometries show that the proposed method not only conserves mass but also provides better estimates of plume morphology and posterior model uncertainty than deterministic inversion results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article presents an experimental study about the classification ability of several classifiers for multi-classclassification of cannabis seedlings. As the cultivation of drug type cannabis is forbidden in Switzerland lawenforcement authorities regularly ask forensic laboratories to determinate the chemotype of a seized cannabisplant and then to conclude if the plantation is legal or not. This classification is mainly performed when theplant is mature as required by the EU official protocol and then the classification of cannabis seedlings is a timeconsuming and costly procedure. A previous study made by the authors has investigated this problematic [1]and showed that it is possible to differentiate between drug type (illegal) and fibre type (legal) cannabis at anearly stage of growth using gas chromatography interfaced with mass spectrometry (GC-MS) based on therelative proportions of eight major leaf compounds. The aims of the present work are on one hand to continueformer work and to optimize the methodology for the discrimination of drug- and fibre type cannabisdeveloped in the previous study and on the other hand to investigate the possibility to predict illegal cannabisvarieties. Seven classifiers for differentiating between cannabis seedlings are evaluated in this paper, namelyLinear Discriminant Analysis (LDA), Partial Least Squares Discriminant Analysis (PLS-DA), Nearest NeighbourClassification (NNC), Learning Vector Quantization (LVQ), Radial Basis Function Support Vector Machines(RBF SVMs), Random Forest (RF) and Artificial Neural Networks (ANN). The performance of each method wasassessed using the same analytical dataset that consists of 861 samples split into drug- and fibre type cannabiswith drug type cannabis being made up of 12 varieties (i.e. 12 classes). The results show that linear classifiersare not able to manage the distribution of classes in which some overlap areas exist for both classificationproblems. Unlike linear classifiers, NNC and RBF SVMs best differentiate cannabis samples both for 2-class and12-class classifications with average classification results up to 99% and 98%, respectively. Furthermore, RBFSVMs correctly classified into drug type cannabis the independent validation set, which consists of cannabisplants coming from police seizures. In forensic case work this study shows that the discrimination betweencannabis samples at an early stage of growth is possible with fairly high classification performance fordiscriminating between cannabis chemotypes or between drug type cannabis varieties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The cichlids of East Africa are renowned as one of the most spectacular examples of adaptive radiation. They provide a unique opportunity to investigate the relationships between ecology, morphological diversity, and phylogeny in producing such remarkable diversity. Nevertheless, the parameters of the adaptive radiations of these fish have not been satisfactorily quantified yet. Lake Tanganyika possesses all of the major lineages of East African cichlid fish, so by using geometric morphometrics and comparative analyses of ecology and morphology, in an explicitly phylogenetic context, we quantify the role of ecology in driving adaptive speciation. We used geometric morphometric methods to describe the body shape of over 1000 specimens of East African cichlid fish, with a focus on the Lake Tanganyika species assemblage, which is composed of more than 200 endemic species. The main differences in shape concern the length of the whole body and the relative sizes of the head and caudal peduncle. We investigated the influence of phylogeny on similarity of shape using both distance-based and variance partitioning methods, finding that phylogenetic inertia exerts little influence on overall body shape. Therefore, we quantified the relative effect of major ecological traits on shape using phylogenetic generalized least squares and disparity analyses. These analyses conclude that body shape is most strongly predicted by feeding preferences (i.e., trophic niches) and the water depths at which species occur. Furthermore, the morphological disparity within tribes indicates that even though the morphological diversification associated with explosive speciation has happened in only a few tribes of the Tanganyikan assemblage, the potential to evolve diverse morphologies exists in all tribes. Quantitative data support the existence of extensive parallelism in several independent adaptive radiations in Lake Tanganyika. Notably, Tanganyikan mouthbrooders belonging to the C-lineage and the substrate spawning Lamprologini have evolved a multitude of different shapes from elongated and Lamprologus-like hypothetical ancestors. Together, these data demonstrate strong support for the adaptive character of East African cichlid radiations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many of the most interesting questions ecologists ask lead to analyses of spatial data. Yet, perhaps confused by the large number of statistical models and fitting methods available, many ecologists seem to believe this is best left to specialists. Here, we describe the issues that need consideration when analysing spatial data and illustrate these using simulation studies. Our comparative analysis involves using methods including generalized least squares, spatial filters, wavelet revised models, conditional autoregressive models and generalized additive mixed models to estimate regression coefficients from synthetic but realistic data sets, including some which violate standard regression assumptions. We assess the performance of each method using two measures and using statistical error rates for model selection. Methods that performed well included generalized least squares family of models and a Bayesian implementation of the conditional auto-regressive model. Ordinary least squares also performed adequately in the absence of model selection, but had poorly controlled Type I error rates and so did not show the improvements in performance under model selection when using the above methods. Removing large-scale spatial trends in the response led to poor performance. These are empirical results; hence extrapolation of these findings to other situations should be performed cautiously. Nevertheless, our simulation-based approach provides much stronger evidence for comparative analysis than assessments based on single or small numbers of data sets, and should be considered a necessary foundation for statements of this type in future.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Intensity-modulated radiotherapy (IMRT) treatment plan verification by comparison with measured data requires having access to the linear accelerator and is time consuming. In this paper, we propose a method for monitor unit (MU) calculation and plan comparison for step and shoot IMRT based on the Monte Carlo code EGSnrc/BEAMnrc. The beamlets of an IMRT treatment plan are individually simulated using Monte Carlo and converted into absorbed dose to water per MU. The dose of the whole treatment can be expressed through a linear matrix equation of the MU and dose per MU of every beamlet. Due to the positivity of the absorbed dose and MU values, this equation is solved for the MU values using a non-negative least-squares fit optimization algorithm (NNLS). The Monte Carlo plan is formed by multiplying the Monte Carlo absorbed dose to water per MU with the Monte Carlo/NNLS MU. Several treatment plan localizations calculated with a commercial treatment planning system (TPS) are compared with the proposed method for validation. The Monte Carlo/NNLS MUs are close to the ones calculated by the TPS and lead to a treatment dose distribution which is clinically equivalent to the one calculated by the TPS. This procedure can be used as an IMRT QA and further development could allow this technique to be used for other radiotherapy techniques like tomotherapy or volumetric modulated arc therapy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE: To compare different techniques for positive contrast imaging of susceptibility markers with MRI for three-dimensional visualization. As several different techniques have been reported, the choice of the suitable method depends on its properties with regard to the amount of positive contrast and the desired background suppression, as well as other imaging constraints needed for a specific application. MATERIALS AND METHODS: Six different positive contrast techniques are investigated for their ability to image at 3 Tesla a single susceptibility marker in vitro. The white marker method (WM), susceptibility gradient mapping (SGM), inversion recovery with on-resonant water suppression (IRON), frequency selective excitation (FSX), fast low flip-angle positive contrast SSFP (FLAPS), and iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) were implemented and investigated. RESULTS: The different methods were compared with respect to the volume of positive contrast, the product of volume and signal intensity, imaging time, and the level of background suppression. Quantitative results are provided, and strengths and weaknesses of the different approaches are discussed. CONCLUSION: The appropriate choice of positive contrast imaging technique depends on the desired level of background suppression, acquisition speed, and robustness against artifacts, for which in vitro comparative data are now available.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Evidence regarding the effectiveness of oral vitamin B12 in patients with serum vitamin B12 levels between 125-200 pM/l is lacking. We compared the effectiveness of one-month oral vitamin B12 supplementation in patients with a subtle vitamin B12 deficiency to that of a placebo. METHODS: This multicentre (13 general practices, two nursing homes, and one primary care center in western Switzerland), parallel, randomised, controlled, closed-label, observer-blind trial included 50 patients with serum vitamin B12 levels between 125-200 pM/l who were randomized to receive either oral vitamin B12 (1000 μg daily, N = 26) or placebo (N = 24) for four weeks. The institution's pharmacist used simple randomisation to generate a table and allocate treatments. The primary outcome was the change in serum methylmalonic acid (MMA) levels after one month of treatment. Secondary outcomes were changes in total homocysteine and serum vitamin B12 levels. Blood samples were centralised for analysis and adherence to treatment was verified by an electronic device (MEMS; Aardex Europe, Switzerland). Trial registration: ISRCTN 22063938. RESULTS: Baseline characteristics and adherence to treatment were similar in both groups. After one month, one patient in the placebo group was lost to follow-up. Data were evaluated by intention-to-treat analysis. One month of vitamin B12 treatment (N = 26) lowered serum MMA levels by 0.13 μmol/l (95%CI 0.06-0.19) more than the change observed in the placebo group (N = 23). The number of patients needed to treat to detect a metabolic response in MMA after one month was 2.6 (95% CI 1.7-6.4). A significant change was observed for the B12 serum level, but not for the homocysteine level, hematocrit, or mean corpuscular volume. After three months without active treatment (at four months), significant differences in MMA levels were no longer detected. CONCLUSIONS: Oral vitamin B12 treatment normalised the metabolic markers of vitamin B12 deficiency. However, a one-month daily treatment with 1000 μg oral vitamin B12 was not sufficient to normalise the deficiency markers for four months, and treatment had no effect on haematological signs of B12 deficiency.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Relaxation rates provide important information about tissue microstructure. Multi-parameter mapping (MPM) estimates multiple relaxation parameters from multi-echo FLASH acquisitions with different basic contrasts, i.e., proton density (PD), T1 or magnetization transfer (MT) weighting. Motion can particularly affect maps of the apparent transverse relaxation rate R2(*), which are derived from the signal of PD-weighted images acquired at different echo times. To address the motion artifacts, we introduce ESTATICS, which robustly estimates R2(*) from images even when acquired with different basic contrasts. ESTATICS extends the fitted signal model to account for inherent contrast differences in the PDw, T1w and MTw images. The fit was implemented as a conventional ordinary least squares optimization and as a robust fit with a small or large confidence interval. These three different implementations of ESTATICS were tested on data affected by severe motion artifacts and data with no prominent motion artifacts as determined by visual assessment or fast optical motion tracking. ESTATICS improved the quality of the R2(*) maps and reduced the coefficient of variation for both types of data-with average reductions of 30% when severe motion artifacts were present. ESTATICS can be applied to any protocol comprised of multiple 2D/3D multi-echo FLASH acquisitions as used in the general research and clinical setting.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: The clinical course of HIV-1 infection is highly variable among individuals, at least in part as a result of genetic polymorphisms in the host. Toll-like receptors (TLRs) have a key role in innate immunity and mutations in the genes encoding these receptors have been associated with increased or decreased susceptibility to infections. OBJECTIVES: To determine whether single-nucleotide polymorphisms (SNPs) in TLR2-4 and TLR7-9 influenced the natural course of HIV-1 infection. METHODS: Twenty-eight SNPs in TLRs were analysed in HAART-naive HIV-positive patients from the Swiss HIV Cohort Study. The SNPs were detected using Sequenom technology. Haplotypes were inferred using an expectation-maximization algorithm. The CD4 T cell decline was calculated using a least-squares regression. Patients with a rapid CD4 cell decline, less than the 15th percentile, were defined as rapid progressors. The risk of rapid progression associated with SNPs was estimated using a logistic regression model. Other candidate risk factors included age, sex and risk groups (heterosexual, homosexual and intravenous drug use). RESULTS: Two SNPs in TLR9 (1635A/G and +1174G/A) in linkage disequilibrium were associated with the rapid progressor phenotype: for 1635A/G, odds ratio (OR), 3.9 [95% confidence interval (CI),1.7-9.2] for GA versus AA and OR, 4.7 (95% CI,1.9-12.0) for GG versus AA (P = 0.0008). CONCLUSION: Rapid progression of HIV-1 infection was associated with TLR9 polymorphisms. Because of its potential implications for intervention strategies and vaccine developments, additional epidemiological and experimental studies are needed to confirm this association.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Knowledge of cerebral blood flow (CBF) alterations in cases of acute stroke could be valuable in the early management of these cases. Among imaging techniques affording evaluation of cerebral perfusion, perfusion CT studies involve sequential acquisition of cerebral CT sections obtained in an axial mode during the IV administration of iodinated contrast material. They are thus very easy to perform in emergency settings. Perfusion CT values of CBF have proved to be accurate in animals, and perfusion CT affords plausible values in humans. The purpose of this study was to validate perfusion CT studies of CBF by comparison with the results provided by stable xenon CT, which have been reported to be accurate, and to evaluate acquisition and processing modalities of CT data, notably the possible deconvolution methods and the selection of the reference artery. METHODS: Twelve stable xenon CT and perfusion CT cerebral examinations were performed within an interval of a few minutes in patients with various cerebrovascular diseases. CBF maps were obtained from perfusion CT data by deconvolution using singular value decomposition and least mean square methods. The CBF were compared with the stable xenon CT results in multiple regions of interest through linear regression analysis and bilateral t tests for matched variables. RESULTS: Linear regression analysis showed good correlation between perfusion CT and stable xenon CT CBF values (singular value decomposition method: R(2) = 0.79, slope = 0.87; least mean square method: R(2) = 0.67, slope = 0.83). Bilateral t tests for matched variables did not identify a significant difference between the two imaging methods (P >.1). Both deconvolution methods were equivalent (P >.1). The choice of the reference artery is a major concern and has a strong influence on the final perfusion CT CBF map. CONCLUSION: Perfusion CT studies of CBF achieved with adequate acquisition parameters and processing lead to accurate and reliable results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There has been a lack of quick, simple and reliable methods for determination of nanoparticle size. An investigation of the size of hydrophobic (CdSe) and hydrophilic (CdSe/ZnS) quantum dots was performed by using the maximum position of the corresponding fluorescence spectrum. It has been found that fluorescence spectroscopy is a simple and reliable methodology to estimate the size of both quantum dot types. For a given solution, the homogeneity of the size of quantum dots is correlated to the relationship between the fluorescence maximum position (FMP) and the quantum dot size. This methodology can be extended to the other fluorescent nanoparticles. The employment of evolving factor analysis and multivariate curve resolution-alternating least squares for decomposition of the series of quantum dots fluorescence spectra recorded by a specific measuring procedure reveals the number of quantum dot fractions having different diameters. The size of the quantum dots in a particular group is defined by the FMP of the corresponding component in the decomposed spectrum. These results show that a combination of the fluorescence and appropriate statistical method for decomposition of the emission spectra of nanoparticles may be a quick and trusted method for the screening of the inhomogeneity of their solution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present the first density model of Stromboli volcano (Aeolian Islands, Italy) obtained by simultaneously inverting land-based (543) and sea-surface (327) relative gravity data. Modern positioning technology, a 1 x 1 m digital elevation model, and a 15 x 15 m bathymetric model made it possible to obtain a detailed 3-D density model through an iteratively reweighted smoothness-constrained least-squares inversion that explained the land-based gravity data to 0.09 mGal and the sea-surface data to 5 mGal. Our inverse formulation avoids introducing any assumptions about density magnitudes. At 125 m depth from the land surface, the inferred mean density of the island is 2380 kg m(-3), with corresponding 2.5 and 97.5 percentiles of 2200 and 2530 kg m-3. This density range covers the rock densities of new and previously published samples of Paleostromboli I, Vancori, Neostromboli and San Bartolo lava flows. High-density anomalies in the central and southern part of the island can be related to two main degassing faults crossing the island (N41 and NM) that are interpreted as preferential regions of dyke intrusions. In addition, two low-density anomalies are found in the northeastern part and in the summit area of the island. These anomalies seem to be geographically related with past paroxysmal explosive phreato-magmatic events that have played important roles in the evolution of Stromboli Island by forming the Scari caldera and the Neostromboli crater, respectively. (C) 2014 Elsevier B.V. All rights reserved.