18 resultados para prodrug pharmacokinetics


Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: The aim of the present study was the in vitro and in vivo evaluation of a novel aqueous formulation based on polymeric micelles for the topical delivery of cyclosporine A for dry eye treatment. METHODS: In vitro experiments were carried out on primary rabbit corneal cells, which were characterized by immunocytochemistry using fluorescein-labeled lectin I/isolectin B4 for the endothelial cells and mouse monoclonal antibody to cytokeratin 3+12 for the epithelial ones. Living cells were incubated for 1 hour or 24 hours with a fluorescently labeled micelle formulation and analyzed by fluorescence microscopy. In vivo evaluations were done by Schirmer test, osmolarity measurement, CyA kinetics in tears, and CyA ocular distribution after topical instillation. A 0.05% CyA micelle formulation was compared to a marketed emulsion (Restasis). RESULTS: The in vitro experiments showed the internalization of micelles in the living cells. The Schirmer test and osmolarity measurements demonstrated that micelles did not alter the ocular surface properties. The evaluation of the tear fluid gave similar CyA kinetics values: AUC = 2339 ± 1032 min*μg/mL and 2321 ± 881.63; Cmax = 478 ± 111 μg/mL and 451 ± 74; half-life = 36 ± 9 min and 28 ± 9 for the micelle formulation and Restasis, respectively. The ocular distribution investigation revealed that the novel formulation delivered 1540 ± 400 ng CyA/g tissue to the cornea. CONCLUSIONS: The micelle formulation delivered active CyA into the cornea without evident negative influence on the ocular surface properties. This formulation could be applied for immune-related ocular surface diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fully human anti-lipopolysaccharide (LPS) immunoglobulin M (IgM) monoclonal antibody panobacumab was developed as an adjunctive immunotherapy for the treatment of O11 serotype Pseudomonas aeruginosa infections. We evaluated the potential clinical efficacy of panobacumab in the treatment of nosocomial pneumonia. We performed a post-hoc analysis of a multicenter phase IIa trial (NCT00851435) designed to prospectively evaluate the safety and pharmacokinetics of panobacumab. Patients treated with panobacumab (n = 17), including 13 patients receiving the full treatment (three doses of 1.2 mg/kg), were compared to 14 patients who did not receive the antibody. Overall, the 17 patients receiving panobacumab were more ill. They were an average of 72 years old [interquartile range (IQR): 64-79] versus an average of 50 years old (IQR: 30-73) (p = 0.024) and had Acute Physiology and Chronic Health Evaluation II (APACHE II) scores of 17 (IQR: 16-22) versus 15 (IQR: 10-19) (p = 0.043). Adjunctive immunotherapy resulted in an improved clinical outcome in the group receiving the full three-course panobacumab treatment, with a resolution rate of 85 % (11/13) versus 64 % (9/14) (p = 0.048). The Kaplan-Meier survival curve showed a statistically significantly shorter time to clinical resolution in this group of patients (8.0 [IQR: 7.0-11.5] versus 18.5 [IQR: 8-30] days in those who did not receive the antibody; p = 0.004). Panobacumab adjunctive immunotherapy may improve clinical outcome in a shorter time if patients receive the full treatment (three doses). These preliminary results suggest that passive immunotherapy targeting LPS may be a complementary strategy for the treatment of nosocomial O11 P. aeruginosa pneumonia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: Imipenem is a broad spectrum antibiotic used to treat severe infections in critically ill patients. Imipenem pharmacokinetics (PK) was evaluated in a cohort of neonates treated in the Neonatal Intensive Care Unit of the Lausanne University Hospital. The objective of our study was to identify key demographic and clinical factors influencing imipenem exposure in this population. Method: PK data from neonates and infants with at least one imipenem concentration measured between 2002 and 2013 were analyzed applying population PK modeling methods. Measurement of plasma concentrations were performed upon the decision of the physician within the frame of a therapeutic drug monitoring (TDM) programme. Effects of demographic (sex, body weight, gestational age, postnatal age) and clinical factors (serum creatinine as a measure of kidney function; co-administration of furosemide, spironolactone, hydrochlorothiazide, vancomycin, metronidazole and erythromycin) on imipenem PK were explored. Model-based simulations were performed (with a median creatinine value of 46 μmol/l) to compare various dosing regimens with respect to their ability to maintain drug levels above predefined minimum inhibitory concentrations (MIC) for at least 40 % of the dosing interval. Results: A total of 144 plasma samples was collected in 68 neonates and infants, predominantly preterm newborns, with median gestational age of 27 weeks (24 - 41 weeks) and postnatal age of 21 days (2 - 153 days). A two-compartment model best characterized imipenem disposition. Actual body weight exhibited the greatest impact on PK parameters, followed by age (gestational age and postnatal age) and serum creatinine on clearance. They explain 19%, 9%, 14% and 9% of the interindividual variability in clearance respectively. Model-based simulations suggested that 15 mg/kg every 12 hours maintain drug concentrations over a MIC of 2 mg/l for at least 40% of the dosing interval during the first days of life, whereas neonates older than 14 days of life required a dose of 20 mg/kg every 12 hours. Conclusion: Dosing strategies based on body weight and post-natal age are recommended for imipenem in all critically ill neonates and infants. Most current guidelines seem adequate for newborns and TDM should be restricted to some particular clinical situations.