32 resultados para process of human resource management


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current restrictions for human cell-based therapies have been related to technological limitations with regards to cellular proliferation capacity (simple culture conditions), maintenance of differentiated phenotype for primary human cell culture and transmission of communicable diseases. Cultured primary fetal cells from one organ donation could possibly meet the exigent and stringent technical aspects for development of therapeutic products. Master and working cell banks from one fetal organ donation (skin) can be developed in short periods of time and safety tests can be performed at all stages of cell banking. For therapeutic use, fetal cells can be used up to two thirds of their life-span in an out-scaling process and consistency for several biological properties includes protein concentration, gene expression and biological activity. As it is the intention that banked primary fetal cells can profit from the prospected treatment of hundreds of thousands of patients with only one organ donation, it is imperative to show consistency, tracability and safety of the process including donor tissue selection, cell banking, cell testing and growth of cells in out-scaling for the preparation of whole-cell tissue-engineering products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The altered expression of the SOX2 transcription factor is associated with oncogenic or tumor suppressor functions in human cancers. This factor regulates the migration and invasion of different cancer cells. In this study we investigated the effect of constitutive SOX2 overexpression on the migration and adhesion capacity of embryonal teratocarcinoma NT2/D1 cells derived from a metastasis of a human testicular germ cell tumor. We detected that increased SOX2 expression changed the speed, mode and path of cell migration, but not the adhesion ability of NT2/D1 cells. Additionally, we demonstrated that SOX2 overexpression increased the expression of the tumor suppressor protein p53 and the HDM2 oncogene. Our results contribute to the better understanding of the effect of SOX2 on the behavior of tumor cells originating from a human testicular germ cell tumor. Considering that NT2/D1 cells resemble cancer stem cells in many features, our results could contribute to the elucidation of the role of SOX2 in cancer stem cells behavior and the process of metastasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Intimal hyperplasia (IH) is a vascular remodeling process which often leads to failure of arterial bypass or hemodialysis access. Experimental and clinical work have provided insight in IH development; however, further studies under precise controlled conditions are required to improve therapeutic strategies to inhibit IH development. Ex vivo perfusion of human vessel segments under standardized hemodynamic conditions may provide an adequate experimental approach for this purpose. Therefore, chronically perfused venous segments were studied and compared to traditional static culture procedures with regard to functional and histomorphologic characteristics as well as gene expression. MATERIALS AND METHODS: Static vein culture allowing high tissue viability was performed as previously described. Ex vivo vein support system (EVVSS) was performed using a vein support system consisting of an incubator with a perfusion chamber and a pump. EVVSS allows vessel perfusion under continuous flow while maintaining controlled hemodynamic conditions. Each human saphenous vein was divided in two parts, one cultured in a Pyrex dish and the other part perfused in EVVSS for 14days. Testing of vasomotion, histomorphometry, expression of CD 31, Factor VIII, MIB 1, alpha-actin, and PAI-l were determined before and after 14days of either experimental conditions. RESULTS: Human venous segments cultured under traditional or perfused conditions exhibited similar IH after 14 days as shown by histomorphometry. Smooth-muscle cell (SMC) was preserved after chronic perfusion. Although integrity of both endothelial and smooth-muscle cells appears to be maintained in both culture conditions as confirmed by CD31, factor VIII, and alpha-actin expression, a few smooth-muscle cells in the media stained positive for factor VIII. Cell-proliferation marker MIB-1 was also detected in the two settings and PAI-1 mRNA expression and activity increased significantly after 14 days of culture and perfusion. CONCLUSION: This study demonstrates the feasibility to chronically perfuse human vessels under sterile conditions with preservation of cellular integrity and vascular contractility. To gain insights into the mechanisms leading to IH, it will now be possible to study vascular remodeling not only under static conditions but also in hemodynamic environment mimicking as closely as possible the flow conditions encountered in reconstructive vascular surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Human saphenous vein grafts are one of the salvage bypass conduits when endovascular procedures are not feasible or fail. Understanding the remodeling process that venous grafts undergo during exposure to arterial conditions is crucial to improve their patency, which is often compromised by intimal hyperplasia. The precise role of hemodynamic forces such as shear stress and arterial pressure in this remodeling is not fully characterized. The aim of this study was to determine the involvement of arterial shear stress and pressure on vein wall remodeling and to unravel the underlying molecular mechanisms. METHODS: An ex vivo vein support system was modified for chronic (up to 1 week), pulsatile perfusion of human saphenous veins under controlled conditions that permitted the separate control of arterial shear stress and different arterial pressure (7 mm Hg or 70 mm Hg). RESULTS: Veins perfused for 7 days under high pressure (70 mm Hg) underwent significant development of a neointima compared with veins exposed to low pressure (7 mm Hg). These structural changes were associated with altered expression of several molecular markers. Exposure to an arterial shear stress under low pressure increased the expression of matrix metalloproteinase (MMP)-2 and MMP-9 and tissue inhibitor of metalloproteinase (TIMP)-1 at the transcript, protein, and activity levels. This increase was enhanced by high pressure, which also increased TIMP-2 protein expression despite decreased levels of the cognate transcript. In contrast, the expression of plasminogen activator inhibitor-1 increased with shear stress but was not modified by pressure. Levels of the venous marker Eph-B4 were decreased under arterial shear stress, and levels of the arterial marker Ephrin-B2 were downregulated under high-pressure conditions. CONCLUSIONS: This model is a valuable tool to identify the role of hemodynamic forces and to decipher the molecular mechanisms leading to failure of human saphenous vein grafts. Under ex vivo conditions, arterial perfusion is sufficient to activate the remodeling of human veins, a change that is associated with the loss of specific vein markers. Elevation of pressure generates intimal hyperplasia, even though veins do not acquire arterial markers. CLINICAL RELEVANCE: The pathological remodeling of the venous wall, which leads to stenosis and ultimately graft failure, is the main limiting factor of human saphenous vein graft bypass. This remodeling is due to the hemodynamic adaptation of the vein to the arterial environment and cannot be prevented by conventional therapy. To develop a more targeted therapy, a better understanding of the molecular mechanisms involved in intimal hyperplasia is essential, which requires the development of ex vivo models of chronic perfusion of human veins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The neurofilament (NF) proteins (NF-H, NF-M, and NF-L for high, medium, and low molecular weights) play a crucial role in the organization of neuronal shape and function. In a preliminary study, the abundance of total NF-L was shown to be decreased in brains of opioid addicts. Because of the potential relevance of NF abnormalities in opioid addiction, we quantitated nonphosphorylated and phosphorylated NF in postmortem brains from 12 well-defined opioid abusers who had died of an opiate overdose (heroin or methadone). Levels of NF were assessed by immunoblotting techniques using phospho-independent and phospho-dependent antibodies, and the relative (% changes in immunoreactivity) and absolute (changes in ng NF/microg total protein) amounts of NF were calculated. Decreased levels of nonphosphorylated NF-H (42-32%), NF-M (14-9%) and NF-L (30-29%) were found in the prefrontal cortex of opioid addicts compared with sex, age, and postmortem delay-matched controls. In contrast, increased levels of phosphorylated NF-H (58-41%) and NF-M (56-28%) were found in the same brains of opioid addicts. The ratio of phosphorylated to nonphosphorylated NF-H in opioid addicts (3.4) was greater than that in control subjects (1.6). In the same brains of opioid addicts, the levels of protein phosphatase of the type 2A were found unchanged, which indicated that the hyperphosphorylation of NF-H is not the result of a reduced dephosphorylation process. The immunodensities of GFAP (the specific glial cytoskeletol protein), alpha-internexin (a neuronal filament related to NF-L) and synaptophysin (a synapse-specific protein) were found unchanged, suggesting a lack of gross changes in glial reaction, other intermediate filaments of the neuronal cytoskeletol, and synaptic density in the prefrontal cortex of opioid addicts. These marked reductions in total NF proteins and the aberrant hyperphosphorylation of NF-H in brains of opioid addicts may play a significant role in the cellular mechanisms of opioid addiction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rhesus macaques (Macaca mulatta) have played a valuable role in the development of human immunodeficiency virus (HIV) vaccine candidates prior to human clinical trials. However, changes and/or improvements in immunogen quality in the good manufacturing practice (GMP) process or changes in adjuvants, schedule, route, dose, or readouts have compromised the direct comparison of T-cell responses between species. Here we report a comparative study in which T-cell responses from humans and macaques to HIV type 1 antigens (Gag, Pol, Nef, and Env) were induced by the same vaccine batches prepared under GMP and administered according to the same schedules in the absence and presence of priming. Priming with DNA (humans and macaques) or alphavirus (macaques) and boosting with NYVAC induced robust and broad antigen-specific responses, with highly similar Env-specific gamma interferon (IFN-gamma) enzyme-linked immunospot assay responses in rhesus monkeys and human volunteers. Persistent cytokine responses of antigen-specific CD4(+) and CD8(+) T cells of the central memory as well as the effector memory phenotype, capable of simultaneously eliciting multiple cytokines (IFN-gamma, interleukin 2, and tumor necrosis factor alpha), were induced. Responses were highly similar in humans and primates, confirming earlier data indicating that priming is essential for inducing robust NYVAC-boosted IFN-gamma T-cell responses. While significant similarities were observed in Env-specific responses in both species, differences were also observed with respect to responses to other HIV antigens. Future studies with other vaccines using identical lots, immunization schedules, and readouts will establish a broader data set of species similarities and differences with which increased confidence in predicting human responses may be achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Résumé de l'article : L'hyperplasie intimale est un processus de remodelage vasculaire ubiquitaire après une lésion, pouvant menacer la perméabilité de tout type de reconstruction vasculaire. Les mécanismes physiopathologiques impliqués dans le développement de l'hyperplasie intimale ne sont que partiellement élucidés. Il est par conséquent nécessaire d'effectuer des recherches complémentaires afin d'en améliorer la compréhension et ainsi permettre l'élaboration de nouvelles stratégies thérapeutiques médicamenteuses. La culture de veines en milieu statique permet le développement de l'hyperplasie intimale. Ce modèle maintient la viabilité tissulaire, comme décrit précédemment dans d'autres études, mais empêche l'analyse des paramètres hémodynamiques. La mise au point d'un modèle de perfusion in vitro permettant la perfusion de segments vasculaires représente une approche expérimentale intégrant les différents facteurs hémodynamiques. Le système de perfusion (Ex Vivo Vein Support System) que nous avons élaboré conserve l'intégrité pariétale ainsi que les propriétés vasomotrices des veines pour une durée de 14 jours. Cette étude démontre que les deux modèles permettent le développement de l'hyperplasie intimale. Toutefois, les propriétés vasomotrices ainsi que l'influence des paramètres hémodynamiques ne peuvent être analysées que par l'utilisation du système de perfusion. Ce dernier a permis de perfuser des vaisseaux humains sans contamination bactérienne tout en maintenant l'intégrité cellulaire. Ce modèle de perfusion se rapproche plus des conditions hémodynamiques rencontrées in vivo que le modèle statique. Abstract : Background. Intimal hyperplasia (IH) is a vascular remodeling process which often leads to failure of arterial bypass or hemodialysis access. Experimental and clinical work have provided insight in IH development; however, further studies under precise con-trolled conditions are required to improve therapeutic strategies to inhibit IH development. Ex vivo perfusion of human vessel segments under standardized hemodynamic conditions may provide an adequate experimental approach for this purpose. Therefore, chronically perfused venous segments were studied and compared to traditional static culture procedures with regard to functional and histomorphologic characteristics as well as gene expression. Materials and methods. Static vein culture allowing high tissue viability was performed as previously described. Ex vivo vein support system (EVVSS) was performed using a vein support system consisting of an incubator with a perfusion chamber and a pump. EVVSS allows vessel perfusion under continuous flow while maintaining controlled hemodynamic conditions. Each human saphenous vein was divided in two parts, one cultured in a Pyrex dish and the other part perfused in EVVSS for 14 days. Testing of vasomotion, histomorphometry, expression of CD 31, Factor VIII, MIB 1, α-actin, and PAI-1 were determined before and after 14 days of either experimental conditions. Results, Human venous segments cultured under traditional or perfused conditions exhibited similar IH after 14 days as shown by histomorphometry. Smooth-muscle cell ( SMC) was preserved after chronic perfusion. Although integrity of both endothelial and smooth-muscle cells appears to be maintained in both culture conditions as confirmed by CD31, factor VIII and α-actin expression, a few smooth-muscle cells in the media stained positive for factor VIII. Cell-proliferation marker MIB-1 was also detected in the two settings and PAI-1 mRNA expression and activity increased significantly after 14 days of culture and perfusion. Conclusion. This study demonstrates the feasibility to chronically perfuse human vessels under sterile conditions with preservation of cellular integrity and vascular contractility. To gain insights into the mechanisms leading to IH, it will now be possible to study vascular remodeling not only under static conditions but also in hemodynamic environment mimicking as closely as possible the flow conditions encountered in reconstructive vascular surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Homologous recombination provides a major pathway for the repair of DNA double-strand breaks in mammalian cells. Defects in homologous recombination can lead to high levels of chromosomal translocations or deletions, which may promote cell transformation and cancer development. A key component of this process is RAD51. In comparison to RecA, the bacterial homologue, human RAD51 protein exhibits low-level strand-exchange activity in vitro. This activity can, however, be stimulated by the presence of high salt. Here, we have investigated the mechanistic basis for this stimulation. We show that high ionic strength favours the co-aggregation of RAD51-single-stranded DNA (ssDNA) nucleoprotein filaments with naked duplex DNA, to form a complex in which the search for homologous sequences takes place. High ionic strength allows differential binding of RAD51 to ssDNA and double-stranded DNA (dsDNA), such that ssDNA-RAD51 interactions are unaffected, whereas those between RAD51 and dsDNA are destabilized. Most importantly, high salt induces a conformational change in RAD51, leading to the formation of extended nucleoprotein filaments on ssDNA. These extended filaments mimic the active form of the Escherichia coli RecA-ssDNA filament that exhibits efficient strand-exchange activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The function of antigen-specific CD8+ T cells, which may protect against both infectious and malignant diseases, can be impaired by ligation of their inhibitory receptors, which include CTL-associated protein 4 (CTLA-4) and programmed cell death 1 (PD-1). Recently, B and T lymphocyte attenuator (BTLA) was identified as a novel inhibitory receptor with structural and functional similarities to CTLA-4 and PD-1. BTLA triggering leads to decreased antimicrobial and autoimmune T cell responses in mice, but its functions in humans are largely unknown. Here we have demonstrated that as human viral antigen-specific CD8+ T cells differentiated from naive to effector cells, their surface expression of BTLA was gradually downregulated. In marked contrast, human melanoma tumor antigen-specific effector CD8+ T cells persistently expressed high levels of BTLA in vivo and remained susceptible to functional inhibition by its ligand herpes virus entry mediator (HVEM). Such persistence of BTLA expression was also found in tumor antigen-specific CD8+ T cells from melanoma patients with spontaneous antitumor immune responses and after conventional peptide vaccination. Remarkably, addition of CpG oligodeoxynucleotides to the vaccine formulation led to progressive downregulation of BTLA in vivo and consequent resistance to BTLA-HVEM-mediated inhibition. Thus, BTLA activation inhibits the function of human CD8+ cancer-specific T cells, and appropriate immunotherapy may partially overcome this inhibition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The differentiation of CD4(+) or CD8(+) T cells following priming of naive cells is central in the establishment of the immune response against pathogens or tumors. However, our understanding of this complex process and the significance of the multiple subsets of differentiation remains controversial. Gene expression profiling has opened new directions of investigation in immunobiology. Nonetheless, the need for substantial amount of biological material often limits its application range. In this study, we have developed procedures to perform microarray analysis on amplified cDNA from low numbers of cells, including primary T lymphocytes, and applied this technology to the study of CD4 and CD8 lineage differentiation. Gene expression profiling was performed on samples of 1000 cells from 10 different subpopulations, defining the major stages of post-thymic CD4(+) or CD8(+) T cell differentiation. Surprisingly, our data revealed that while CD4(+) and CD8(+) T cell gene expression programs diverge at early stages of differentiation, they become increasingly similar as cells reach a late differentiation stage. This suggests that functional heterogeneity between Ag experienced CD4(+) and CD8(+) T cells is more likely to be located early during post-thymic differentiation, and that late stages of differentiation may represent a common end in the development of T-lymphocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many assays to evaluate the nature, breadth, and quality of antigen-specific T cell responses are currently applied in human medicine. In most cases, assay-related protocols are developed on an individual laboratory basis, resulting in a large number of different protocols being applied worldwide. Together with the inherent complexity of cellular assays, this leads to unnecessary limitations in the ability to compare results generated across institutions. Over the past few years a number of critical assay parameters have been identified which influence test performance irrespective of protocol, material, and reagents used. Describing these critical factors as an integral part of any published report will both facilitate the comparison of data generated across institutions and lead to improvements in the assays themselves. To this end, the Minimal Information About T Cell Assays (MIATA) project was initiated. The objective of MIATA is to achieve a broad consensus on which T cell assay parameters should be reported in scientific publications and to propose a mechanism for reporting these in a systematic manner. To add maximum value for the scientific community, a step-wise, open, and field-spanning approach has been taken to achieve technical precision, user-friendliness, adequate incorporation of concerns, and high acceptance among peers. Here, we describe the past, present, and future perspectives of the MIATA project. We suggest that the approach taken can be generically applied to projects in which a broad consensus has to be reached among scientists working in fragmented fields, such as immunology. An additional objective of this undertaking is to engage the broader scientific community to comment on MIATA and to become an active participant in the project.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Excessive exposure to solar ultraviolet radiation is involved in the complex biologic process of cutaneous aging. Wavelengths in the ultraviolet-A and -B range (UV-A and UV-B) have been shown to be responsible for the induction of proteases, e. g. the collagenase matrix metalloproteinase 1 (MMP-1), which are related to cell aging. As devices emitting longer wavelengths are widely used in therapeutic and cosmetic interventions and as the induction of MMP-1 by water-filtered infrared-A (wIRA) had been discussed, it was of interest to assess effects of wIRA on the cellular and molecular level known to be possibly involved in cutaneous degeneration. OBJECTIVES: Investigation of the biological implications of widely used water-filtered infrared-A (wIRA) radiators for clinical use on human skin fibroblasts assessed by MMP-1 gene expression (MMP-1 messenger ribonucleic acid (mRNA) expression).Methods: Human skin fibroblasts were irradiated with approximately 88% wIRA (780-1400 nm) and 12% red light (RL, 665-780 nm) with 380 mW/cm(2) wIRA(+RL) (333 mW/cm(2) wIRA) on the one hand and for comparison with UV-A (330-400 nm, mainly UV-A1) and a small amount of blue light (BL, 400-450 nm) with 28 mW/cm(2) UV-A(+BL) on the other hand. Survival curves were established by colony forming ability after single exposures between 15 minutes and 8 hours to wIRA(+RL) (340-10880 J/cm(2) wIRA(+RL), 300-9600 J/cm(2) wIRA) or 15-45 minutes to UV-A(+BL) (25-75 J/cm(2) UV-A(+BL)). Both conventional Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) and quantitative real-time RT-PCR techniques were used to determine the induction of MMP-1 mRNA at two physiologic temperatures for skin fibroblasts (30 degrees C and 37 degrees C) in single exposure regimens (15-60 minutes wIRA(+RL), 340-1360 J/cm(2) wIRA(+RL), 300-1200 J/cm(2) wIRA; 30 minutes UV-A(+BL), 50 J/cm(2) UV-A(+BL)) and in addition at 30 degrees C in a repeated exposure protocol (up to 10 times 15 minutes wIRA(+RL) with 340 J/cm(2) wIRA(+RL), 300 J/cm(2) wIRA at each time). RESULTS: Single exposure of cultured human dermal fibroblasts to UV-A(+BL) radiation yielded a very high increase in MMP-1 mRNA expression (11 +/-1 fold expression for RT-PCR and 76 +/-2 fold expression for real-time RT-PCR both at 30 degrees C, 75 +/-1 fold expression for real-time RT-PCR at 37 degrees C) and a dose-dependent decrease in cell survival. In contrast, wIRA(+RL) did not produce cell death and did not induce a systematic increase in MMP-1 mRNA expression (less than twofold expression, within the laboratory range of fluctuation) detectable with the sensitive methods applied. Additionally, repeated exposure of human skin fibroblasts to wIRA(+RL) did not induce MMP-1 mRNA expression systematically (less than twofold expression by up to 10 consecutive wIRA(+RL) exposures and analysis with real-time RT-PCR). CONCLUSIONS: wIRA(+RL) even at the investigated disproportionally high irradiances does not induce cell death or a systematic increase of MMP-1 mRNA expression, both of which can be easily induced by UV-A radiation. Furthermore, these results support previous findings of in vivo investigations on collagenase induction by UV-A but not wIRA and show that infrared-A with appropriate irradiances does not seem to be involved in MMP-1 mediated photoaging of the skin. As suggested by previously published studies wIRA could even be implicated in a protective manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability of a population to adapt to changing environments depends critically on the amount and kind of genetic variability it possesses. Mutations are an important source of new genetic variability and may lead to new adaptations, especially if the population size is large. Mutation rates are extremely variable between and within species, and males usually have higher mutation rates as a result of elevated rates of male germ cell division. This male bias affects the overall mutation rate. We examined the factors that influence male mutation bias, and focused on the effects of classical life-history parameters, such as the average age at reproduction and elevated rates of sperm production in response to sexual selection and sperm competition. We argue that human-induced changes in age at reproduction or in sexual selection will affect male mutation biases and hence overall mutation rates. Depending on the effective population size, these changes are likely to influence the long-term persistence of a population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TWEAK (TNF homologue with weak apoptosis-inducing activity) and Fn14 (fibroblast growth factor-inducible protein 14) are members of the tumor necrosis factor (TNF) ligand and receptor super-families. Having observed that Xenopus Fn14 cross-reacts with human TWEAK, despite its relatively low sequence homology to human Fn14, we examined the conservation in tertiary fold and binding interfaces between the two species. Our results, combining NMR solution structure determination, binding assays, extensive site-directed mutagenesis and molecular modeling, reveal that, in addition to the known and previously characterized β-hairpin motif, the helix-loop-helix motif makes an essential contribution to the receptor/ligand binding interface. We further discuss the insight provided by the structural analyses regarding how the cysteine-rich domains of the TNF receptor super-family may have evolved over time. DATABASE: Structural data are available in the Protein Data Bank/BioMagResBank databases under the accession codes 2KMZ, 2KN0 and 2KN1 and 17237, 17247 and 17252. STRUCTURED DIGITAL ABSTRACT: TWEAK binds to hFn14 by surface plasmon resonance (View interaction) xeFn14 binds to TWEAK by enzyme linked immunosorbent assay (View interaction) TWEAK binds to xeFn14 by surface plasmon resonance (View interaction) hFn14 binds to TWEAK by enzyme linked immunosorbent assay (View interaction).