221 resultados para plasma osmolarity
Resumo:
A gas chromatography-mass spectrometry (GC-MS) method is presented which allows the simultaneous determination of the plasma concentrations of the levo-alpha-acetylmethadol (LAAM) and of its active metabolites (NorLAAM and DiNorLAAM), after derivatization with the reagent trifluoroacetic anhydride (TFAA). No interferences from endogenous compounds were observed following the extraction of plasma samples from 11 different human subjects. The standard curves were linear over a working range of 5-200ng/ml for the three compounds. Recoveries measured at three concentrations ranged from 47 to 67% for LAAM, from 50 to 69% for NorLAAM and from 28 to 50% for DiNorLAAM. Intra- and interday coefficients of variation determined at three concentrations ranged from 5 to 13% for LAAM, from 3 to 9% for NorLAAM and from 5 to 13% for DiNorLAAM. The limits of quantitation of the method were found to be 4ng/ml for the three compounds. No interference was noted from methadone. This sensitive and specific analytical method could be useful for assessing the in vivo relationship between LAAM's blood levels, clinical efficacy and/or cardiotoxicity
Resumo:
In this pilot study, we show that plasma phenylalanine concentration can be predicted from urine concentration if the age of the patient is taken into consideration. This observation could open the way to a new monitoring of phenylketonuric patients in which painful frequent blood sampling, mandatory to adapt the low phenylalanine diet, could be mostly replaced by urinalysis. Compliance to treatment would be improved and hence also the ultimate mental development. Since this study was based on a small number of patients, validation of the model in a large multicentric survey is needed before it can be recommended.
Resumo:
In order to evaluate the effect of head injury in severely traumatized patients on the response of ACTH, GH, PRL, and TSH plasma levels, 36 patients were prospectively studied over 5 consecutive days following injury. They were divided into three groups: Group I, severe isolated head injury (n = 14); Group II, multiple injury combined with severe head injury (n = 12); Group III, multiple injury without head injury (n = 10). No significant trend was observed during the 5 consecutive days. The following changes in plasma levels were observed, compared to normal reference value (median values): ACTH was normal in the three groups; PRL was elevated in Group II and normal in the other groups; GH was elevated in all groups; TSH was elevated in Group III and reduced in Groups I and II. Intergroup comparisons showed significantly lower plasma levels for PRL (p less than 0.05) and TSH (p less than 0.01) in Groups I and II, i.e., head-injured patients, compared to Group III, i.e., traumatized patients without head injury. A relationship was observed between the severity of head injury, as expressed by Glasgow Coma Score, intracranial pressure levels, outcome, and TSH and PRL levels.
Resumo:
Among the various determinants of treatment response, the achievement of sufficient blood levels is essential for curing malaria. For helping us at improving our current understanding of antimalarial drugs pharmacokinetics, efficacy and toxicity, we have developed a liquid chromatography-tandem mass spectrometry method (LC-MS/MS) requiring 200mul of plasma for the simultaneous determination of 14 antimalarial drugs and their metabolites which are the components of the current first-line combination treatments for malaria (artemether, artesunate, dihydroartemisinin, amodiaquine, N-desethyl-amodiaquine, lumefantrine, desbutyl-lumefantrine, piperaquine, pyronaridine, mefloquine, chloroquine, quinine, pyrimethamine and sulfadoxine). Plasma is purified by a combination of protein precipitation, evaporation and reconstitution in methanol/ammonium formate 20mM (pH 4.0) 1:1. Reverse-phase chromatographic separation of antimalarial drugs is obtained using a gradient elution of 20mM ammonium formate and acetonitrile both containing 0.5% formic acid, followed by rinsing and re-equilibration to the initial solvent composition up to 21min. Analyte quantification, using matrix-matched calibration samples, is performed by electro-spray ionization-triple quadrupole mass spectrometry by selected reaction monitoring detection in the positive mode. The method was validated according to FDA recommendations, including assessment of extraction yield, matrix effect variability, overall process efficiency, standard addition experiments as well as antimalarials short- and long-term stability in plasma. The reactivity of endoperoxide-containing antimalarials in the presence of hemolysis was tested both in vitro and on malaria patients samples. With this method, signal intensity of artemisinin decreased by about 20% in the presence of 0.2% hemolysed red-blood cells in plasma, whereas its derivatives were essentially not affected. The method is precise (inter-day CV%: 3.1-12.6%) and sensitive (lower limits of quantification 0.15-3.0 and 0.75-5ng/ml for basic/neutral antimalarials and artemisinin derivatives, respectively). This is the first broad-range LC-MS/MS assay covering the currently in-use antimalarials. It is an improvement over previous methods in terms of convenience (a single extraction procedure for 14 major antimalarials and metabolites reducing significantly the analytical time), sensitivity, selectivity and throughput. While its main limitation is investment costs for the equipment, plasma samples can be collected in the field and kept at 4 degrees C for up to 48h before storage at -80 degrees C. It is suited to detecting the presence of drug in subjects for screening purposes and quantifying drug exposure after treatment. It may contribute to filling the current knowledge gaps in the pharmacokinetics/pharmacodynamics relationships of antimalarials and better define the therapeutic dose ranges in different patient populations.
Resumo:
Neuropeptide Y (NPY) is a vasoconstrictor peptide possibly involved in the regulation of renal sodium handling and renin release. This investigation was undertaken to assess in conscious normotensive rats the acute effects of a non-pressor dose of NPY on renal plasma flow, glomerular filtration rate, sodium excretion and plasma renin activity. Experiments were also performed during concomitant beta-adrenoceptor stimulation with isoproterenol. NPY per se had no effect on the studied parameters. Renal plasma flow was increased by isoproterenol and was significantly higher when the beta-adrenoceptor stimulant was infused alone (13.4 +/- 2.1 ml/min, p < 0.05, mean +/- SEM) that when administered together with NPY (7.2 +/- 2.0 ml/min). This was also true for glomerular filtration rate (3.3 +/- 0.3 vs. 1.8 +/- 0.3 ml/min, p < 0.01) and plasma renin activity (6.3 +/- 1.7 vs. 2.1 +/- 0.4 ng Ang I/ml/h, p < 0.05). Our data however do not allow to deduce whether the inhibitory effect of NPY on isoproterenol-induced renin release is mediated by changes in intrarenal hemodynamics or a direct effect on juxtaglomerular cells.
Resumo:
Immunotherapy with monoclonal and polyclonal immunoglobulin is successfully applied to improve many clinical conditions, including infection, autoimmune diseases, or immunodeficiency. Most immunoglobulin products, recombinant or plasma-derived, are based on IgG antibodies, whereas to date, the use of IgA for therapeutic application has remained anecdotal. In particular, purification or production of large quantities of secretory IgA (SIgA) for potential mucosal application has not been achieved. In this work, we sought to investigate whether polymeric IgA (pIgA) recovered from human plasma is able to associate with secretory component (SC) to generate SIgA-like molecules. We found that ∼15% of plasma pIgA carried J chain and displayed selective SC binding capacity either in a mixture with monomeric IgA (mIgA) or after purification. The recombinant SC associated covalently in a 1:1 stoichiometry with pIgA and with similar efficacy as colostrum-derived SC. In comparison with pIgA, the association with SC delayed degradation of SIgA by intestinal proteases. Similar results were obtained with plasma-derived IgM. In vitro, plasma-derived IgA and SIgA neutralized Shigella flexneri used as a model pathogen, resulting in a delay of bacteria-induced damage targeted to polarized Caco-2 cell monolayers. The sum of these novel data demonstrates that association of plasma-derived IgA or IgM with recombinant/colostrum-derived SC is feasible and yields SIgA- and SIgM-like molecules with similar biochemical and functional characteristics as mucosa-derived immunoglobulins.
Resumo:
Concentrations of total (R) + (S) and of the enantiomers (R) and (S) of thioridazine and metabolites were measured in 21 patients who were receiving 100 mg thioridazine for 14 days and who were comedicated with moclobemide (450 mg/day). Two patients were poor metabolizers of dextromethorphan and one was a poor metabolizer of mephenytoin. Cytochrome P450IID6 (CYP2D6) is involved in the formation of thioridazine 2-sulfoxide (2-SO) from thioridazine and also probably partially in the formation of thioridazine 5-sulfoxide (5-SO), but not in the formation of thioridazine 2-sulfone (2-SO2) from thioridazine 2-SO. Significant correlations between the mephenytoin enantiomeric ratio and concentrations of thioridazine and metabolites suggest that cytochrome P450IIC19 could contribute to the biotransformation of thioridazine into yet-unknown metabolites, other than thioridazine 2-SO, thioridazine 2-SO2, or thioridazine 5-SO. An enantioselectivity and a large interindividual variability in the metabolism of thioridazine have been shown: measured (R)/(S) ratios of thioridazine, thioridazine 2-SO fast eluting (FE), thioridazine 2-SO slow eluting (SE), thioridazine 2-SO (FE+SE), thioridazine 2-SO2, thioridazine 5-SO(FE), and thioridazine 5-SO(SE) were (mean +/- SD) 3.48 +/- 0 .93 (range, 2.30 to 5.80), 0.45 +/- 0.22 (range, 0.21 to 1.20), 2.27 +/- 8.1 (range, 6.1 to 40.1), 4.64 +/- 0.68 (range, 2.85 to 5.70), 3.26 +/- 0.58 (range, 2.30 to 4.30), 0.049 +/- 0.019 (range, (0.021 to 0.087), and 67.2 +/- 66.2 (range, 16.8 to 248), respectively. CYP2D6 is apparently involved in the formation of (S)-thioridazine 2-SO(FE), (R)-thioridazine 2-SO(SE), and also probably (S)-thioridazine 5-SO(FE) and (R)-thioridazine 5-SO(SE).
Resumo:
Objective: Limited information is available on the quantitative relationship between family history and the corresponding underlying traits. We analyzed these associations for blood pressure, fasting blood glucose, and cholesterol levels. Methods: Data were obtained from 6,102 Caucasian participants (2,903 men and 3,199 women) aged 35-75 years using a population-based cross-sectional survey in Switzerland. Cardiovascular disease risk factors were measured, and the corresponding family history was self-reported using a structured questionnaire. Results: The prevalence of a positive family history (in first-degree relatives) was 39.6% for hypertension, 22.3% for diabetes, and 29.0% for hypercholesterolemia. Family history was not known for at least one family member in 41.8% of participants for hypertension, 14.4% for diabetes, and 50.2% for hypercholesterolemia. A positive family history was strongly associated with higher levels of the corresponding trait, but not with the other traits. Participants who reported not to know their family history of hypertension had a higher systolic blood pressure than participants with a negative history. Sibling histories had higher positive predictive values than parental histories. The ability to discriminate, calibrate, and reclassify was best for the family history of hypertension. Conclusions: Family history of hypertension, diabetes, and hypercholesterolemia was strongly associated with the corresponding dichotomized and continuous phenotypes.
Resumo:
1. Respiratory alkalosis accompanies the clinical syndrome of tetany, precipitates cardiac arrhythmias and predisposes to coronary vasoconstriction. Magnesium plays a critical role in the maintenance of membrane function, and magnesium depletion is often associated with cardiac arrhythmias or vasoconstriction. 2. As technology for detecting circulating ionized magnesium (the most interesting form with respect to physiological and biological properties) is now available in the form of new magnesium-selective electrodes, the effect of respiratory alkalosis induced by voluntary overbreathing for 30 min on circulating ionized magnesium was studied in eight healthy subjects. 3. The total plasma magnesium concentration was not modified by hyperventilation. On the contrary, hyperventilation was associated with a significant reduction in the ionized magnesium concentration of 0.05 (0.02-0.15) mmol/l (median and range) and in the free magnesium fraction of 0.06 (0.01-0.19). During hyperventilation the relative intravascular magnesium mass, calculated from changes in total plasma magnesium concentration and haematocrit, decreased significantly. 4. It is concluded that acute overbreathing reduces the circulating ionized magnesium concentration and the intravascular magnesium mass. It is therefore conceivable that extracellular magnesium deficiency is at least a subsidiary cause of the syndrome of tetany and the cardiac complications that are precipitated by hyperventilation.
Resumo:
To evaluate the efficacy of anti-J5 serum in the treatment of severe infectious purpura, 73 children were randomized to receive either anti-J5 (40) or control (33) plasma. Age, blood pressure, and biologic risk factors were similar in both groups. At admission, however, tumor necrosis factor serum concentrations were 974 +/- 173 pg/ml compared with 473 +/- 85 pg/ml (P = .023) and interleukin-6 serum concentrations were 129 +/- 45 compared with 19 +/- 5 ng/ml (P = .005) in the control and treated groups, respectively. The duration of shock and the occurrence of complications were similar in both groups. The mortality rate was 36% in the control group and 25% in the treated group (P = .317; odds ratio, 0.76; 95% confidence interval, 0.46-1.26). This trend disappeared after correction for unbalances in risk factors at randomization using a logistic regression model. These results suggest that anti-j5 plasma did not affect the course or mortality of severe infectious purpura in children.
Resumo:
La majorité des organelles d'une cellule adaptent leur nombre et leur taille pendant les processus de division cellulaire, de trafic vésiculaire ou suite à des changements environnementaux par des processus de fusion et de fragmentation membranaires. Ceci est valable notamment pour le golgi, les mitochondries, les péroxisomes et les lysosomes. La vacuole est le compartiment terminal de la voie endocytaire dans la levure Saccharomyces cerevisiae\ elle correspond aux lysosomes des cellules mammifères. Suite à un choc hyperosmotique, la vacuole se fragmente en plusieurs petites vésicules. Durant ce projet, cette fragmentation a été étudiée en utilisant la technique de microscopie confocale in vivo. J'ai observé que la division de la vacuole se produit d'une façon asymétrique. La première minute après le choc osmotique, les vacuoles rétrécissent et forment des longues invaginations tubulaires. Cette phase est dépendante de la protéine Vps1, un membre de la famille des protéines apparentées à la dynamine, ainsi que d'un gradient transmembranaire de protons. Pendant les 10-15 minutes qui suivent, des vésicules se détachent dans les régions où l'on observe les invaginations pendant la phase initiale. Cette deuxième phase qui mène à la fission des nouveaux compartiments vacuolaires dépend de la production du lipide PI(3,5)P2 par la protéine Fab1. J'ai établi la suite des événements du processus de fragmentation des vacuoles et propose la possibilité d'un rôle régulateur de la protéine kinase cycline-dépendante Pho85.¦En outre, j'ai tenté d'éclaircir plus spécifiquement le rôle de Vps1 pendant la fusion et fission des vacuoles. J'ai trouvé que tous les deux processus sont dépendants de l'activité GTPase de cette protéine. De plus l'association avec la membrane vacuolaire paraît régulée par le cycle d'hydrolyse du GTP. Vps1 peut lier la membrane sans la présence d'un autre facteur protéinique, ce qui permet de conclure à une interaction directe avec des lipides de la membrane. Cette interaction est au moins partiellement effectuée par le domaine GTPase, ce qui est une nouveauté pour un membre de cette famille de protéines. Une deuxième partie de Vps1, nommée insert B, est impliquée dans la liaison à la vacuole, soit par interaction directe avec la membrane, soit par régulation du domaine GTPase. En assumant que Vps1 détienne deux régions capables de liaison aux membranes, je conclus qu'elle pourrait fonctionner comme facteur de « tethering » lors de la fusion des vacuoles.¦-¦La cellule contient plusieurs sous-unités, appelées organelles, possédant chacune une fonction spécifique. Dépendant des processus qui s'y déroulent à l'intérieur, un environnement chimique spécifique est requis. Pour maintenir ces différentes conditions, les organelles sont séparées par des membranes. Lors de la division cellulaire ou en adaptation à des changements de milieu, les organelles doivent être capables de modifier leur morphologie. Cette adaptation a souvent lieu par fusion ou division des organelles. Le même principe est valable pour la vacuole dans la levure. La vacuole est une organelle qui sert principalement au stockage des aliments et à la dégradation des différents composants cellulaires. Alors que la fusion des vacuoles est un processus déjà bien décrit, la fragmentation des vacuoles a jusqu'ici été peu étudiée. Elle peut être induit par un choc osmotique: à cause de la concentration de sel élevé dans le milieu, le cytosol de la levure perd de l'eau. Par un flux d'eau de la vacuole au cytosol, la cellule est capable d'équilibrer celui-ci. Quand la vacuole perd du volume, elle doit réadapter le rapport entre surface membranaire et volume, ce qui se fait efficacement par une fragmentation d'une grande vacuole en plusieurs petites vésicules. Comment ce processus se déroule d'un point de vue morphologique n'a pas été décrit jusqu'à présent. En analysant la fragmentation vacuolaire par microscopie, j'ai trouvé que celle-ci se déroule en deux phases. Pendant la première minute suivant le choc osmotique, les vacuoles rétrécissent et forment des longues invaginations tubulaires. Cette phase dépend de la protéine Vps1, un membre de la famille des protéines apparentées à la dynamine, ainsi que du gradient transmembranaire de protons. Ce gradient s'établit par une pompe membranaire, la V-ATPase, qui transporte des protons dans la vacuole en utilisant l'énergie libérée par hydrolyse d'ATP. Après cette phase initiale, la formation de nouvelles vésicules vacuolaires dépend de la synthèse du lipide PI(3,5)P2.¦Dans la deuxième partie de l'étude, j'ai tenté de décrire comment Vps1 lie la membrane pour effectuer un remodelage de la vacuole. Vps1 est nécessaire pour la fusion et la fragmentation des vacuoles. J'ai découvert que tous les deux processus dépendent de sa capacité d'hydrolyser du GTP. Ainsi l'association avec la membrane est couplée au cycle d'hydrolyse du GTP. Vps1 peut lier la membrane sans la présence d'une autre protéine, et interagit donc très probablement avec les lipides de la membrane. Deux parties différentes de la protéine sont impliquées dans la liaison, dont une, inattendue, le domaine GTPase.¦-¦Numerous organelles undergo membrane fission and fusion events during cell division, vesicular traffic, or in response to changes in environmental conditions. Examples include Golgi (Acharya et al., 1998) mitochondria (Bleazard et al., 1999) peroxisomes (Kuravi et al., 2006) and lysosomes (Ward et al., 1997). In the yeast Saccharomyces cerevisiae the vacuole is the terminal component of the endocytic pathway and corresponds to lysosomes in mammalian cells. Yeast vacuoles fragment into multiple small vesicles in response to a hypertonic shock. This rapid and homogeneous reaction can serve as a model to study the requirements of the fragmentation process. Here, I investigated osmotically induced fragmentation by time-lapse microscopy. I observe that the small fragmentation products originate directly from the large central vacuole by asymmetric scission rather than by consecutive equal divisions and that fragmentation occurs in two distinct phases. During the first minute, vacuoles shrink and generate deep invaginations, leaving behind tubular structures. This phase requires the dynamin-like GTPase Vps1 and the vacuolar proton gradient. In the subsequent 10-15 minutes, vesicles pinch off from the tubular structures in a polarized fashion, directly generating fragmentation products of the final size. This phase depends on the production of phosphatidylinositol- 3,5-bisphosphate by the Fab1 complex. I suggest a possible regulation of vacuole fragmentation by the CDK Pho85. Based on my microscopy study I established a sequential involvement of the different fission factors.¦In addition to the morphological description of vacuole fragmentation I more specifically aimed to shed some light on the role of Vps1 in vacuole fragmentation and fusion. I find that both functions are dependent on the GTPase activity of the protein and that also the membrane association of the dynamin-like protein is coupled to the GTPase cycle. I found that Vps1 has the capacity for direct lipid binding on the vacuole and that this lipid binding is at least partially mediated through residues in the GTPase domain, a complete novelty for a dynamin family member. A second stretch located in the region of insert Β has also membrane-binding activity or regulates the association with the vacuole through the GTPase domain. Under the assumption of two membrane-binding regions I speculate on Vps1 as a possible tethering factor for vacuole fusion.
Resumo:
BACKGROUND: Plasma free and urinary metanephrines are recognized biomarkers for the assessment of pheochromocytoma. Plasma total metanephrines with a long half-life may represent another useful biomarker. OBJECTIVE: The aim of this study is to evaluate the diagnostic performances of plasma total metanephrines alone or combined with free metanephrines and fractionated 24-h urinary metanephrines. METHODS: A retrospective, case-control diagnostic test study was conducted between 1999 and 2007 in two university hospitals in Switzerland and two institutions in France. The patients included 46 cases with histologically proven pheochromocytoma, and 181 controls suspected of tumor with negative investigations and 3-year follow-up. None had renal dysfunction. Sensitivity and specificity were compared after expressing each measurement result as a ratio over its upper reference limit, adding the ratios of normetanephrine and metanephrine, and defining cut-off values of 1 or 2 for this sum. RESULTS: Applying a cut-off value of 1, plasma free and total metanephrines and urinary fractionated metanephrines had similar sensitivities of 96% (95% confidence interval, 86-99%), 95% (85-99%), and 95% (84-99%) along with similar specificities of 89% (83-94%), 91% (84-95%), and 86% (80-91%). A cut-off of 2 for the sum of ratios over reference limit improves the specificity, and it can be used for a confirmation test based on another biomarker taken among the three biomarkers. CONCLUSION: All three metanephrine-based tests perform equivalently for diagnosing pheochromocytoma in the absence of renal insufficiency, and can be conveniently associated two by two for confirming/excluding tumor.
Resumo:
Phosphorylation of a polypeptide of approximately 120 kD in pea (Pisum sativum L.) plasma membranes in response to blue light has been shown to be involved in phototropic curvature, but the relationship of this protein to the kinase and photoreceptor acting upon it is uncertain. Using two-phase aqueous partitioning to isolate right-side-out plasma membrane vesicles, we have obtained evidence suggesting that the photoreceptor, kinase, and substrate are localized to the plasma membrane fraction. Latent phosphorylation accessible through Triton X-100 or freeze/thaw treatments of purified plasma membrane vesicles indicates that at least the kinase moiety is present on the internal face of the plasma membrane. Effects of solubilization of vesicles on fluence-response characteristics and on phosphorylation levels provide evidence that the receptor, kinase, and protein substrate are present together in individual mixed detergent micelles, either as a stable complex or as domains of a single polypeptide. In vivo blue-light irradiation results in a small but significant decrease in mobility of the 120-kD phosphorylated protein on sodium dodecylsulfate gel electrophoresis. This mobility shift is evident on Coomassie-stained gels and on western blots probed with polyclonal antibodies raised against the 120-kD protein. Among the plasma membrane proteins bound to the reactive nucleotide analog fluorosulfonylbenzoyladenine (FSBA), a distinct protein band at 120 kD can be detected on blots probed with anti-FSBA antibodies. This band exhibits an in vivo light-dependent mobility shift identical to that observed for the protein band and antibodies specific for the 120-kD protein, implying that the 120-kD protein has an integral nucleotide binding site and consistent with the possibility that the substrate protein is also a kinase.
Resumo:
Typically at dawn on a hot summer day, land plants need precise molecular thermometers to sense harmless increments in the ambient temperature to induce a timely heat shock response (HSR) and accumulate protective heat shock proteins in anticipation of harmful temperatures at mid-day. Here, we found that the cyclic nucleotide gated calcium channel (CNGC) CNGCb gene from Physcomitrella patens and its Arabidopsis thaliana ortholog CNGC2, encode a component of cyclic nucleotide gated Ca(2+) channels that act as the primary thermosensors of land plant cells. Disruption of CNGCb or CNGC2 produced a hyper-thermosensitive phenotype, giving rise to an HSR and acquired thermotolerance at significantly milder heat-priming treatments than in wild-type plants. In an aequorin-expressing moss, CNGCb loss-of-function caused a hyper-thermoresponsive Ca(2+) influx and altered Ca(2+) signaling. Patch clamp recordings on moss protoplasts showed the presence of three distinct thermoresponsive Ca(2+) channels in wild-type cells. Deletion of CNGCb led to a total absence of one and increased the open probability of the remaining two thermoresponsive Ca(2+) channels. Thus, CNGC2 and CNGCb are expected to form heteromeric Ca(2+) channels with other related CNGCs. These channels in the plasma membrane respond to increments in the ambient temperature by triggering an optimal HSR, leading to the onset of plant acquired thermotolerance.