49 resultados para plant protein sources


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The extracellular pectic matrix is a rich source of oligogalacturonic acid (OGA), one of the most abundant polymeric regulatory molecules on the earth's surface. OGAs regulate the expression of a variety of defense genes and have also been implicated in developmental processes. Little is known about how cells perceive OGAs and we have been attempting to characterise proteins capable of interacting with these molecules. We recently succeeded in cloning a cDNA encoding a small OGA-binding protein, remorin. OGA-binding to remorin is not highly specific, the protein binds homogalacturonides, complex pectic polymers and the animal polyuronide heparin. This lack of specificity contrasts with that often observed with classical receptors and the function of remorin remains to be discovered. Remorin copurifies with the plasma membrane but is a very hydrophilic polypeptide. Its behavior during cell fractionation, as well as a number of properties including the OGA-stimulated in vitro phosphorylation and preliminary localization studies, all suggest parallels with some viral movement proteins. Some of these comparisons will be presented. Experiments to directly test for the possible role of this protein in cell-to-cell signalling are in progress. EEF is supported by FNRS grant 31-3672-92.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

GTPases of the Rab1 subclass are essential for membrane traffic between the endoplasmic reticulum (ER) and Golgi complex in animals, fungi and plants. Rab1-related proteins in higher plants are unusual because sequence comparisons divide them into two putative subclasses, Rab-D1 and Rab-D2, that are conserved in monocots and dicots. We tested the hypothesis that the Rab-D1 and Rab-D2 proteins of Arabidopsis represent functionally distinct groups. RAB-D1 and RAB-D2a each targeted fluorescent proteins to the same punctate structures associated with the Golgi stacks and trans-Golgi-network. Dominant-inhibitory N121I mutants of each protein inhibited traffic of diverse cargo proteins at the ER but they appeared to act via distinct biochemical pathways as biosynthetic traffic in cells expressing either of the N121I mutants could be restored by coexpressing the wild-type form of the same subclass but not the other subclass. The same interaction was observed in transgenic seedlings expressing RAB-D1 [N121I]. Insertional mutants confirmed that the three Arabidopsis Rab-D2 genes were extensively redundant and collectively performed an essential function that could not be provided by RAB-D1, which was non-essential. However, plants lacking RAB-D1, RAB-D2b and RAB-D2c were short and bushy with low fertility, indicating that the Rab-D1 and Rab-D2 subclasses have overlapping functions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

After a gastric bypass, covering protein needs is impossible. This deficit is co-responsible for several postoperative complications so it is essential to inform, prepare and train every patient candidate for such an intervention. To increase protein intake, it is important to work on two different aspects: on the one hand on food sources, targeting the richest food and, on the other hand, on food tolerance so that these foods can be consumed. In fact, gastric bypass induces not only a reduction in gastric volume, but also reduces the passage from the stomach to the intestine. Changes in feeding behavior are much needed to improve food tolerance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blue light is known to cause rapid phosphorylation of a membrane protein in etiolated seedlings of several plant species, a protein that, at least in etiolated pea seedlings and maize coleoptiles, has been shown to be associated with the plasma membrane. The light-driven phosphorylation has been proposed on the basis of correlative evidence to be an early step in the signal transduction chain for phototropism. In the Arabidopsis thaliana mutant JK224, the sensitivity to blue light for induction of first positive phototropism is known to be 20- to 30-fold lower than in wild type, whereas second positive curvature appears to be normal. While light-induced phosphorylation can be demonstrated in crude membrane preparations from shoots of the mutant, the level of phosphorylation is dramatically lower than in wild type, as is the sensitivity to blue light. Another A. thaliana mutant, JK218, that completely lacks any phototropic responses to up to 2 h of irradiation, shows a normal level of light-induced phosphorylation at saturation. Since its gravitropic sensitivity is normal, it is presumably blocked in some step between photoreception and the confluence of the signal transduction pathways for phototropism and gravitropism. We conclude from mutant JK224 that light-induced phosphorylation plays an early role in the signal transduction chain for phototropism in higher plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plants are sessile and photo-autotrophic; their entire life cycle is thus strongly influenced by the ever-changing light environment. In order to sense and respond to those fluctuating conditions higher plants possess several families of photoreceptors that can monitor light from UV-B to the near infrared (far-red). The molecular nature of UV-B sensors remains unknown, red (R) and far-red (FR) light is sensed by the phytochromes (phyA-phyE in Arabidopsis) while three classes of UV-A/blue photoreceptors have been identified: cryptochromes, phototropins, and members of the Zeitlupe family (cry1, cry2, phot1, phot2, ZTL, FKF1, and LKP2 in Arabidopsis). Functional specialization within photoreceptor families gave rise to members optimized for a wide range of light intensities. Genetic and photobiological studies performed in Arabidopsis have shown that these light sensors mediate numerous adaptive responses (e.g., phototropism and shade avoidance) and developmental transitions (e.g., germination and flowering). Some physiological responses are specifically triggered by a single photoreceptor but in many cases multiple light sensors ensure a coordinated response. Recent studies also provide examples of crosstalk between the responses of Arabidopsis to different external factors, in particular among light, temperature, and pathogens. Although the different photoreceptors are unrelated in structure, in many cases they trigger similar signaling mechanisms including light-regulated protein-protein interactions or light-regulated stability of several transcription factors. The breath and complexity of this topic forced us to concentrate on specific aspects of photomorphogenesis and we point the readers to recent reviews for some aspects of light-mediated signaling (e.g., transition to flowering).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phototropism, or plant growth in response to unidirectional light, is an adaptive response of crucial importance. Lateral differences in low fluence rates of blue light are detected by phototropin 1 (phot1) in Arabidopsis. Only NONPHOTOTROPIC HYPOCOTYL 3 (NPH3) and root phototropism 2, both belonging to the same family of proteins, have been previously identified as phototropin-interacting signal transducers involved in phototropism. PHYTOCHROME KINASE SUBSTRATE (PKS) 1 and PKS2 are two phytochrome signaling components belonging to a small gene family in Arabidopsis (PKS1-PKS4). The strong enhancement of PKS1 expression by blue light and its light induction in the elongation zone of the hypocotyl prompted us to study the function of this gene family during phototropism. Photobiological experiments show that the PKS proteins are critical for hypocotyl phototropism. Furthermore, PKS1 interacts with phot1 and NPH3 in vivo at the plasma membrane and in vitro, indicating that the PKS proteins may function directly with phot1 and NPH3 to mediate phototropism. The phytochromes are known to influence phototropism but the mechanism involved is still unclear. We show that PKS1 induction by a pulse of blue light is phytochrome A-dependent, suggesting that the PKS proteins may provide a molecular link between these two photoreceptor families.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIMS: To develop reporter constructs based on stable and unstable variants of the green fluorescent protein (GFP) for monitoring balanced production of antifungal compounds that are crucial for the capacity of the root-colonizing Pseudomonas fluorescens strain CHA0 to control plant diseases caused by soil-borne pathogenic fungi. METHODS AND RESULTS: Pseudomonas fluorescens CHA0 produces the three antifungal metabolites 2,4-diacetylphloroglucinol (DAPG), pyoluteorin (PLT) and pyrrolnitrin (PRN). The gfp[mut3] and gfp[AAV] reporter genes were fused to the promoter regions of the DAPG, PLT and PRN biosynthetic genes. The reporter fusions were then used to follow the kinetics of expression of the three antifungal metabolites in a microplate assay. DAPG and PLT were found to display an inverse relationship in which each metabolite activates its own biosynthesis while repressing the synthesis of the other metabolite. PRN appears not to be involved in this balance. However, the microbial and plant phenolic metabolite salicylate was found to interfere with the expression of both DAPG and PLT. CONCLUSIONS: The results obtained provide evidence that P. fluorescens CHA0 may keep the antifungal compounds DAPG and PLT at a fine-tuned balance that can be affected by certain microbial and plant phenolics. SIGNIFICANCE AND IMPACT OF THE STUDY: To our knowledge, the present study is the first to use stable and unstable GFP variants to study antibiotic gene expression in a biocontrol pseudomonad. The developed reporter fusions will be a highly valuable tool to study in situ expression of this bacterial biocontrol trait on plant roots, i.e. at the site of pathogen suppression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polarized epithelia are fundamental to multicellular life. In animal epithelia, conserved junctional complexes establish membrane diffusion barriers, cellular adherence and sealing of the extracellular space. Plant cellular barriers are of independent evolutionary origin. The root endodermis strongly resembles a polarized epithelium and functions in nutrient uptake and stress resistance. Its defining features are the Casparian strips, belts of specialized cell wall material that generate an extracellular diffusion barrier. The mechanisms localizing Casparian strips are unknown. Here we identify and characterize a family of transmembrane proteins of previously unknown function. These 'CASPs' (Casparian strip membrane domain proteins) specifically mark a membrane domain that predicts the formation of Casparian strips. CASP1 displays numerous features required for a constituent of a plant junctional complex: it forms complexes with other CASPs; it becomes immobile upon localization; and it sediments like a large polymer. CASP double mutants display disorganized Casparian strips, demonstrating a role for CASPs in structuring and localizing this cell wall modification. To our knowledge, CASPs are the first molecular factors that are shown to establish a plasma membrane and extracellular diffusion barrier in plants, and represent a novel way of epithelial barrier formation in eukaryotes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural rubber, obtained almost exclusively from the Para rubber tree (Hevea brasiliensis), is a unique biopolymer of strategic importance that, in many of its most significant applications, cannot be replaced by synthetic rubber alternatives. Several pressing motives lead to the search for alternative sources of natural rubber. These include increased evidence of allergenic reactions to Hevea rubber, the danger that the fungal pathogen Microcyclus ulei, causative agent of South American Leaf Blight (SALB), might spread to Southeast Asia, which would severely disrupt rubber production, potential shortages of supply due to increasing demand and changes in land use, and a general trend towards the replacement of petroleum-derived chemicals with renewables. Two plant species have received considerable attention as potential alternative sources of natural rubber: the Mexican shrub Guayule (Parthenium argentatum Gray) and the Russian dandelion (Taraxacum koksaghyz). This review will summarize the current production methods and applications of natural rubber (dry rubber and latex), the threats to the production of natural rubber from the rubber tree, and describe the current knowledge of the production of natural rubber from guayule and Russian dandelion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deletion or substitution of the serine-rich N-terminal stretch of grass phytochrome A (phyA) has repeatedly been shown to yield a hyperactive photoreceptor when expressed under the control of a constitutive promoter in transgenic tobacco or Arabidopsis seedlings retaining their native phyA. These observations have lead to the proposal that the serine-rich region is involved in negative regulation of phyA signaling. To re-evaluate this conclusion in a more physiological context we produced transgenic Arabidopsis seedlings of the phyA-null background expressing Arabidopsis PHYA deleted in the sequence corresponding to amino acids 6-12, under the control of the native PHYA promoter. Compared to the transgenic seedlings expressing wild-type phyA, the seedlings bearing the mutated phyA showed normal responses to pulses of far-red (FR) light and impaired responses to continuous FR light. In yeast two-hybrid experiments, deleted phyA interacted normally with FHY1 and FHL, which are required for phyA accumulation in the nucleus. Immunoblot analysis showed reduced stability of deleted phyA under continuous red or FR light. The reduced physiological activity can therefore be accounted for by the enhanced destruction of the mutated phyA. These findings do not support the involvement of the serine-rich region in negative regulation but they are consistent with a recent report suggesting that phyA turnover is regulated by phosphorylation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crushed seeds of the Moringa oleifera tree have been used traditionally as natural flocculants to clarify drinking water. We previously showed that one of the seed peptides mediates both the sedimentation of suspended particles such as bacterial cells and a direct bactericidal activity, raising the possibility that the two activities might be related. In this study, the conformational modeling of the peptide was coupled to a functional analysis of synthetic derivatives. This indicated that partly overlapping structural determinants mediate the sedimentation and antibacterial activities. Sedimentation requires a positively charged, glutamine-rich portion of the peptide that aggregates bacterial cells. The bactericidal activity was localized to a sequence prone to form a helix-loop-helix structural motif. Amino acid substitution showed that the bactericidal activity requires hydrophobic proline residues within the protruding loop. Vital dye staining indicated that treatment with peptides containing this motif results in bacterial membrane damage. Assembly of multiple copies of this structural motif into a branched peptide enhanced antibacterial activity, since low concentrations effectively kill bacteria such as Pseudomonas aeruginosa and Streptococcus pyogenes without displaying a toxic effect on human red blood cells. This study thus identifies a synthetic peptide with potent antibacterial activity against specific human pathogens. It also suggests partly distinct molecular mechanisms for each activity. Sedimentation may result from coupled flocculation and coagulation effects, while the bactericidal activity would require bacterial membrane destabilization by a hydrophobic loop.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the plant-beneficial soil bacterium Pseudomonas fluorescens CHA0, the production of biocontrol factors (antifungal secondary metabolites and exoenzymes) is controlled at a posttranscriptional level by the GacS/GacA signal transduction pathway involving RNA-binding protein RsmA as a key regulatory element. This protein is assumed to bind to the ribosome-binding site of target mRNAs and to block their translation. RsmA-mediated repression is relieved at the end of exponential growth by two GacS/GacA-controlled regulatory RNAs RsmY and RsmZ, which bind and sequester the RsmA protein. A gene (rsmE) encoding a 64-amino-acid RsmA homolog was identified and characterized in strain CHA0. Overexpression of rsmE strongly reduced the expression of target genes (hcnA, for a hydrogen cyanide synthase subunit; aprA, for the main exoprotease; and phlA, for a component of 2,4-diacetylphloroglucinol biosynthesis). Single null mutations in either rsmA or rsmE resulted in a slight increase in the expression of hcnA, aprA, and phlA. By contrast, an rsmA rsmE double mutation led to strongly increased and advanced expression of these target genes and completely suppressed a gacS mutation. Both the RsmE and RsmA levels increased with increasing cell population densities in strain CHA0; however, the amount of RsmA showed less variability during growth. Expression of rsmE was controlled positively by GacA and negatively by RsmA and RsmE. Mobility shift assays demonstrated specific binding of RsmE to RsmY and RsmZ RNAs. The transcription and stability of both regulatory RNAs were strongly reduced in the rsmA rsmE double mutant. In conclusion, RsmA and RsmE together account for maximal repression in the GacS/GacA cascade of strain CHA0.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The application of plant-beneficial pseudomonads provides a promising alternative to chemical pest management in agriculture. The fact that Pseudomonas fluorescens CHA0 and Pf-5, both well-known biocontrol agents of fungal root diseases, exhibit also potent insecticidal activity is of particular interest, as these plant-beneficial bacteria naturally colonize the rhizosphere of important crop plants. Insecticidal activity in these strains depends on a novel locus encoding the production of a protein toxin termed Fit (for P. fluorescens insecticidal toxin). To gain a better understanding of the ecological relevance of the Pseudomonas anti-insect activity, we have begun to investigate the occurrence and molecular diversity of the Fit toxin genes among root-associated pseudomonads. To this end, we have screened a large world-wide collection of fluorescent Pseudomonas sp. isolated from the roots of different plant species using molecular fingerprinting techniques. The strains are already well characterized for exoproduct patterns and disease-suppressive ability and are currently being tested for insecticidal activity in a greater wax moth larvae assay system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The nuclear receptors are a large family of eukaryotic transcription factors that constitute major pharmacological targets. They exert their combinatorial control through homotypic heterodimerisation. Elucidation of this dimerisation network is vital in order to understand the complex dynamics and potential cross-talk involved. RESULTS: Phylogeny, protein-protein interactions, protein-DNA interactions and gene expression data have been integrated to provide a comprehensive and up-to-date description of the topology and properties of the nuclear receptor interaction network in humans. We discriminate between DNA-binding and non-DNA-binding dimers, and provide a comprehensive interaction map, that identifies potential cross-talk between the various pathways of nuclear receptors. CONCLUSION: We infer that the topology of this network is hub-based, and much more connected than previously thought. The hub-based topology of the network and the wide tissue expression pattern of NRs create a highly competitive environment for the common heterodimerising partners. Furthermore, a significant number of negative feedback loops is present, with the hub protein SHP [NR0B2] playing a major role. We also compare the evolution, topology and properties of the nuclear receptor network with the hub-based dimerisation network of the bHLH transcription factors in order to identify both unique themes and ubiquitous properties in gene regulation. In terms of methodology, we conclude that such a comprehensive picture can only be assembled by semi-automated text-mining, manual curation and integration of data from various sources.