36 resultados para physiology of production
Resumo:
The overwhelming predominance of sexual reproduction in nature is surprising given that sex is expected to confer profound costs in terms of production of males and the breakup of beneficial allele combinations. Recognition of these theoretical costs was the inspiration for a large body of empirical research-typically focused on comparing sexual and asexual organisms, lineages, or genomes-dedicated to identifying the advantages and maintenance of sex in natural populations. Despite these efforts, why sex is so common remains unclear. Here, we argue that we can generate general insights into the advantages of sex by taking advantage of parthenogenetic taxa that differ in such characteristics as meiotic versus mitotic offspring production, ploidy level, and single versus multiple and hybrid versus non-hybrid origin. We begin by evaluating benefits that sex can confer via its effects on genetic linkage, diversity, and heterozygosity and outline how the three classes of benefits make different predictions for which type of parthenogenetic lineage would be favored over others. Next, we describe the type of parthenogenetic model system (if any) suitable for testing whether the hypothesized benefit might contribute to the maintenance of sex in natural populations, and suggest groups of organisms that fit the specifications. We conclude by discussing how empirical estimates of characteristics such as time since derivation and number of independent origins of asexual lineages from sexual ancestors, ploidy levels, and patterns of molecular evolution from representatives of these groups can be used to better understand which mechanisms maintain sex in natural populations.
Resumo:
CcrM is a DNA methyltransferase that methylates the adenine in GANTC motifs in the chromo-some of the bacterial model Caulobacter crescentus. The loss of the CcrM homolog is lethal in C. crescentus and in several other species of Alphaproteobacteria. In this research, we used different experimental and bioinformatic approaches to determine why CcrM is so critical to the physiology of C. crescentus. We first showed that CcrM is a resident orphan DNA methyltransferase in non-Rickettsiales Alphaproteobacteria and that its gene is strictly conserved in this clade (with only one ex¬ception among the genomes sequenced so far). In C. crescentus, cells depleted in CcrM in rich medium quickly lose viability and present an elongated phenotype characteristic of an im¬pairment in cell division. Using minimal medium instead of rich medium as selective and main¬tenance substrate, we could generate a AccrM mutant that presents a viability comparable to the wild type strain and only mild morphological defects. On the basis of a transcriptomic ap¬proach, we determined that several genes essential for cell division were downregulated in the AccrM strain in minimal medium. We offered decisive arguments to support that the efficient transcription of two of these genes, ftsZ and mipZ, coding respectively for the Z-ring forming GTPase FtsZ and an inhibitor of FtsZ polymerization needed for the correct positioning of the Z- ring at mid-cell, requires the methylation of an adenine in a conserved GANTC motif located in their core promoter region. We propose a model, according to which the genome of C. crescentus encodes a transcriptional activator that requires a methylated adenine in a GANTC context to bind to DNA and suggest that this transcriptional regulator might be the global cell-cycle regulator GcrA. In addition, combining a classic genetic approach and in vitro evolution experiments, we showed that the mortality and cell division defects of the AccrM strain in rich medium are mainly due to limiting intracellular levels of the FtsZ protein. We also studied the dynamics of GANTC methylation in C. crescentus using the SMRT technol¬ogy developed by Pacific Biosciences. Our findings support the commonly accepted model, accord¬ing to which the methylation state of GANTC motifs varies during the cell cycle of C. crescentus: before the initiation of DNA replication, the GANTC motifs are fully-methylated (methylated on both strands); when the DNA gets replicated, the GANTC motifs become hemi-methylated (methyl¬ated on one strand only) and this occurs at different times during replication for different loci along the chromosome depending on their position relative to the origin of replication; the GANTC mo¬tifs are only remethylated after DNA replication has finished as a consequence of the massive and short-lived expression of CcrM in predivisional cells. About 30 GANTC motifs in the C. crescentus chromosome were found to be undermethylated in most of the bacterial population; these might be protected from CcrM activity by DNA binding proteins and some of them could be involved in methylation-based bistable transcriptional switches. - CcrM est une ADN méthyltransférase qui méthyle les adénines dans le contexte GANTC dans le génome de la bactérie modèle Caulobacter crescentus. La perte de l'homologue de CcrM chez C. crescentus et chez plusieurs autres espèces d'Alphaproteobactéries est létale. Dans le courant de cette recherche, nous tentons de déterminer pourquoi la protéine CcrM est cruciale pour la survie de C. crescentus. Nous démontrons d'abord que CcrM est une adénine méthyltransférase orpheline résidente, dont le gène fait partie du génome minimal partagé par les Alphaprotéobactéries non-Rickettsiales (à une exception près). Lorsqu'une souche de C. crescentus est privée de CcrM, sa viabilité décroît rapi¬dement et ses cellules présentent une morphologie allongée qui suggère que la division cellulaire est inhibée. Nous sommes parvenus à créer une souche AccrM en utilisant un milieu minimum, au lieu du milieu riche classiquement employé, comme milieu de sélection et de maintenance pour la souche. Lorsque nous avons étudié le transcriptome de cette souche de C. crescentus privée de CcrM, nous avons pu constater que plusieurs gènes essentiels pour le bon déroulement de la division cellulaire bactérienne étaient réprimés. En particulier, l'expression adéquate des gènes ftsZ et mipZ - qui codent, respectivement, pour FtsZ, la protéine qui constitue, au milieu de la cellule, un anneau protéique qui initie le processus de division et pour MipZ, un inhibiteur de la polymérisation de FtsZ qui est indispensable pour le bon positionnement de l'anneau FtsZ - est dépendante de la présence d'une adénine méthylée dans un motif GANTC conservé situé dans leur région promotrice. Nous présentons un modèle selon lequel le génome de C. crescentus code pour un facteur de transcription qui exige la présence d'une adénine méthylée dans un contexte GANTC pour s'attacher à l'ADN et nous suggérons qu'il pourrait s'agir du régulateur global du cycle cellulaire GcrA. En outre, nous montrons, en combinant la génétique classique et une approche basée sur l'évolution expérimentale, que la mortalité et l'inhibition de la division cellulaire caractéristiques de la souche àccrMeη milieu riche sont dues à des niveaux excessivement bas de protéine FtsZ. Nous avons aussi étudié la dynamique de la méthylation du chromosome de C. crescentus sur la base de la technologie SMRT développée par Pacific Biosciences. Nous confirmons le modèle communément accepté, qui affirme que l'état de méthylation des motifs GANTC change durant le cycle cellulaire de C. crescentus: les motifs GANTC sont complètement méthylés (méthylés sur les deux brins) avant de début de la réplication de l'ADN; ils deviennent hémi-méthylés (méthylés sur un brin seulement) une fois répliqués, ce qui arrive à différents moments durant la réplication pour différents sites le long du chromosome en fonction de leur position par rapport à l'origine de répli-cation; finalement, les motifs GANTC sont reméthylés après la fin de la réplication du chromosome lorsque la protéine CcrM est massivement, mais très transitoirement, produite. Par ailleurs, nous identifions dans le chromosome de C. crescentus environ 30 motifs GANTC qui restent en perma-nence non-méthylés dans une grande partie de la population bactérienne; ces motifs sont probable-ment protégés de l'action de CcrM par des protéines qui s'attachent à l'ADN et certains d'entre eux pourraient être impliqués dans des mécanismes de régulation générant une transcription bistable.
Resumo:
Nuclear receptors are a major component of signal transduction in animals. They mediate the regulatory activities of many hormones, nutrients and metabolites on the homeostasis and physiology of cells and tissues. It is of high interest to model the corresponding regulatory networks. While molecular and cell biology studies of individual promoters have provided important mechanistic insight, a more complex picture is emerging from genome-wide studies. The regulatory circuitry of nuclear receptor regulated gene expression networks, and their response to cellular signaling, appear highly dynamic, and involve long as well as short range chromatin interactions. We review how progress in understanding the kinetics and regulation of cofactor recruitment, and the development of new genomic methods, provide opportunities but also a major challenge for modeling nuclear receptor mediated regulatory networks.
Resumo:
Similar to aboveground herbivores, root-feeding insects must locate and identify suitable resources. In the darkness of soil, they mainly rely on root chemical exudations and, therefore, have evolved specific behaviours. Because of their impact on crop yield, most of our knowledge in belowground chemical ecology is biased towards soil-dwelling insect pests. Yet the increasing literature on volatile-mediated interactions in the ground underpins the great importance of chemical signalling in this ecosystem and its potential in pest control. Here, we explore the ecology and physiology of these chemically based interactions. An evolutionary approach reveals interesting patterns in the response of insects to particular classes of volatile or water-soluble organic compounds commonly emitted by roots. Food web analyses reasonably support that volatiles are used as long-range cues whereas water-soluble molecules serve in host acceptance/rejection by the insect; however, data are still scarce. As a case study, the chemical ecology of Diabrotica virgifera virgifera is discussed and applications of belowground signalling in pest management are examined. Soil chemical ecology is an expanding field of research and will certainly be a hub of our understanding of soil communities and subsequently of the management of belowground ecosystem services.
Resumo:
Although Drosophila systemic immunity is extensively studied, little is known about the fly's intestine-specific responses to bacterial infection. Global gene expression analysis of Drosophila intestinal tissue to oral infection with the Gram-negative bacterium Erwinia carotovora revealed that immune responses in the gut are regulated by the Imd and JAK-STAT pathways, but not the Toll pathway. Ingestion of bacteria had a dramatic impact on the physiology of the gut that included modulation of stress response and increased stem cell proliferation and epithelial renewal. Our data suggest that gut homeostasis is maintained through a balance between cell damage due to the collateral effects of bacteria killing and epithelial repair by stem cell division. The Drosophila gut provides a powerful model to study the integration of stress and immunity with pathways associated with stem cell control, and this study should prove to be a useful resource for such further studies.
Resumo:
We compare the primary sex ratio (proportion o haploid eggs laid by queens) and the secondary sex ratio (proportion of male pupae produced) in the Argentine ant Iridomyrmex humilis with the aim of investigating whether workers control the secondary sex ratio by selectively eliminating male brood. The proportion of haploid eggs produced by queens was close to 0.5 in late winter, decreased to less than 0.3 in spring and summer, and increased again to a value close to 0.5 in fall. Laboratory experiments indicate that temperture is a proximate factor influencing the primary sex ratio with a higher proportion of haploid eggs being laid at colder temperatures. Production of queen pupae ceased in mid-June, about three weeks before that of male pupae. After this time only worker pupae were produced. During the period of production of sexuals, the proportion of male pupae ranged from 0.30 to 0.38. Outside this period no males were reared although haploid eggs were produced all the year round by queens. Workers thus exert a control on the secondary sex ratio by eliminating a proportion of the male brood during the period of sexual production and eliminating all the males during the remainder of the cycle. These data are consistent with workers preferring a more female-biased sex ratio than queens. The evolutionary significance of the production of male eggs by queens all the year round is as yet unclear. It may be a mechanism allowing queen replacement in the case of the death of the queens in the colony.
Resumo:
In addition to their well-known antinociceptive action, opioids can modulate non-neuronal functions, such as immune activity and physiology of different cell types. Several findings suggest that the delta-opioid receptor (DOR) and its endogenous ligands (enkephalins) are important players in cell differentiation and proliferation. Here we show the expression of DOR in mouse skin and human skin cultured fibroblasts and keratinocytes using RT-PCR. In DOR knock-out (KO) mice, a phenotype of thinner epidermis and higher expression of cell differentiation marker cytokeratin 10 (CK 10) were observed compared with wild type (WT). Using a burn wound model, significant wound healing delay (about 2 days) and severe epidermal hypertrophy were shown at the wound margin of DOR KO mice. This wound healing delay was further investigated by immunohistochemistry using markers for proliferation, differentiation, re-epithelialization, and dermal repair (CK 6, CK 10, and collagen IV). The levels of all these markers were increased in wounds of KO mice compared with WT. During the wound healing, the epidermal thickness in KO mice augments faster and exceeds that of the WT by day 3. These results suggest an essential role of DOR in skin differentiation, proliferation, and migration, factors that are important for wound healing.
Resumo:
In recent years there has been growing interest in the question of how the particular topology of polymeric chains affects their overall dimensions and physical behavior. The majority of relevant studies are based on numerical simulation methods or analytical treatment; however, both these approaches depend on various assumptions and simplifications. Experimental verification is clearly needed but was hampered by practical difficulties in obtaining preparative amounts of knotted or catenated polymers with predefined topology and precisely set chain length. We introduce here an efficient method of production of various single-stranded DNA knots and catenanes that have the same global chain length. We also characterize electrophoretic migration of the produced single-stranded DNA knots and catenanes with increasing complexity.
Resumo:
Pontryagin's maximum principle from optimal control theory is used to find the optimal allocation of energy between growth and reproduction when lifespan may be finite and the trade-off between growth and reproduction is linear. Analyses of the optimal allocation problem to date have generally yielded bang-bang solutions, i.e. determinate growth: life-histories in which growth is followed by reproduction, with no intermediate phase of simultaneous reproduction and growth. Here we show that an intermediate strategy (indeterminate growth) can be selected for if the rates of production and mortality either both increase or both decrease with increasing body size, this arises as a singular solution to the problem. Our conclusion is that indeterminate growth is optimal in more cases than was previously realized. The relevance of our results to natural situations is discussed.
Resumo:
Recent theory of physiology of language suggests a dual stream dorsal/ventral organization of speech perception. Using intra-cerebral Event-related potentials (ERPs) during pre-surgical assessment of twelve drug-resistant epileptic patients, we aimed to single out electrophysiological patterns during both lexical-semantic and phonological monitoring tasks involving ventral and dorsal regions respectively. Phonological information processing predominantly occurred in the left supra-marginal gyrus (dorsal stream) and lexico-semantic information occurred in anterior/middle temporal and fusiform gyri (ventral stream). Similar latencies were identified in response to phonological and lexico-semantic tasks, suggesting parallel processing. Typical ERP components were strongly left lateralized since no evoked responses were recorded in homologous right structures. Finally, ERP patterns suggested the inferior frontal gyrus as the likely final common pathway of both dorsal and ventral streams. These results brought out detailed evidence of the spatial-temporal information processing in the dual pathways involved in speech perception.
Resumo:
The athlete biological passport (ABP) was recently implemented in anti-doping work and is based on the individual and longitudinal monitoring of haematological or urine markers. These may be influenced by illicit procedures performed by some athletes with the intent to improve exercise performance. Hence the ABP is a valuable tool in the fight against doping. Actually, the passport has been defined as an individual and longitudinal observation of markers. These markers need to belong to the biological cascade influenced by the application of forbidden hormones or more generally, affected by biological manipulations which can improve the performance of the athlete. So far, the haematological and steroid profile modules of the ABP have been implemented in major sport organisations, and a further module is under development. The individual and longitudinal monitoring of some blood and urine markers are of interest, because the intraindividual variability is lower than the corresponding interindividual variability. Among the key prerequisites for the implementation of the ABP is its prospect to resist to the legal and scientific challenges. The ABP should be implemented in the most transparent way and with the necessary independence between planning, interpretation and result management of the passport. To ensure this, the Athlete Passport Management Unit (APMU) was developed and the WADA implemented different technical documents associated to the passport. This was carried out to ensure the correct implementation of a profile which can also stand the challenge of any scientific or legal criticism. This goal can be reached only by following strictly important steps in the chain of production of the results and in the management of the interpretation of the passport. Various technical documents have been then associated to the guidelines which correspond to the requirements for passport operation. The ABP has been completed very recently by the steroid profile module. As for the haematological module, individual and longitudinal monitoring have been applied and the interpretation cascade is also managed by a specific APMU in a similar way as applied in the haematological module. Thus, after exclusion of any possible pathology, specific variation from the individual norms will be then considered as a potential misuse of hormones or other modulators to enhance performance.
Resumo:
The generation of a high productivity cell line is a critical step in the production of a therapeutic protein. Many innovative engineering strategies have been devised in order to maximize the expression rate of production cells for increased process efficiency. Less effort has focused on improvements to the cell line generation process, which is typically long and laborious when using mammalian cells. Based on unexpected findings when generating stable CHO cell lines expressing human IL-17F, we studied the benefit of expressing this protein during the establishment of production cell lines. We demonstrate that IL-17F expression enhances the rate of selection and overall number of selected cell lines as well as their transgene expression levels. We also show that this benefit is observed with different parental CHO cell lines and selection systems. Furthermore, IL-17F expression improves the efficiency of cell line subcloning processes. IL-17F can therefore be exploited in a standard manufacturing process to obtain higher productivity clones in a reduced time frame.
Resumo:
Production flow analysis (PFA) is a well-established methodology used for transforming traditional functional layout into product-oriented layout. The method uses part routings to find natural clusters of workstations forming production cells able to complete parts and components swiftly with simplified material flow. Once implemented, the scheduling system is based on period batch control aiming to establish fixed planning, production and delivery cycles for the whole production unit. PFA is traditionally applied to job-shops with functional layouts, and after reorganization within groups lead times reduce, quality improves and motivation among personnel improves. Several papers have documented this, yet no research has studied its application to service operations management. This paper aims to show that PFA can well be applied not only to job-shop and assembly operations, but also to back-office and service processes with real cases. The cases clearly show that PFA reduces non-value adding operations, introduces flow by evening out bottlenecks and diminishes process variability, all of which contribute to efficient operations management.
Resumo:
Many physiological processes in organisms from bacteria to man are rhythmic, and some of these are controlled by self-sustained oscillators that persist in the absence of external time cues. Circadian clocks are perhaps the best characterized biological oscillators and they exist in virtually all light-sensitive organisms. In mammals, they influence nearly all aspects of physiology and behavior, including sleep-wake cycles, cardiovascular activity, endocrinology, body temperature, renal activity, physiology of the gastro-intestinal tract, and hepatic metabolism. The master pacemaker is located in the suprachiasmatic nuclei, two small groups of neurons in the ventral part of the hypothalamus. However, most peripheral body cells contain self-sustained circadian oscillators with a molecular makeup similar to that of SCN (suprachiasmatic nucleus) neurons. This organization implies that the SCN must synchronize countless subsidiary oscillators in peripheral tissues, in order to coordinate cyclic physiology. In this review, we will discuss some recent studies on the structure and putative functions of the mammalian circadian timing system, but we will also point out some apparent inconsistencies in the currently publicized model for rhythm generation.
Resumo:
A study was undertaken to determine if there was a relation between the mode of colony founding in ants and the physiology of the new queens produced, in which mature gynes of 24 ant species were examined. Gynes of species utilizing independent colony founding had a far higher relative fat content (X±SD; 54±6%)(g fat/g dry weight) than gynes of species employing dependent colony founding(19±8%). Dimorphism between queens and workers was significantly higher in species employing independent colony founding. Thus independent colony founding not only results in production of queens with a relatively higher fat content and therefore with a higher energy content per g, but also results in the production of larger queens (in comparison with worker size). Of species employing independent colony founding, 80% were monogynous, whereas only 11% of the species employing dependent colony founding were monogynous. These results are discussed with regard to the social structure and life-history of ant species.