20 resultados para peroxyl radicals


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemical shifts of protons can report on metabolic transformations such as the conversion of choline to phosphocholine. To follow such processes in vivo, magnetization can be enhanced by dynamic nuclear polarization (DNP). We have hyperpolarized in this manner nitrogen-15 spins in (15)N-labeled choline up to 3.3% by irradiating the 94 GHz electron spin resonance of admixed TEMPO nitroxide radicals in a magnetic field of 3.35 T during ca. 3 h at 1.2 K. The sample was subsequently transferred to a high-resolution magnet, and the enhanced polarization was converted from (15)N to methyl- and methylene protons, using the small (2,3)J((1)H,(15)N) couplings in choline. The room-temperature lifetime of nitrogen polarization in choline, T(1)((15)N) approximately 200 s, could be considerably increased by partial deuteration of the molecule. This procedure enables studies of choline metabolites in vitro and in vivo using DNP-enhanced proton NMR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Overactivation of the sympatho-adrenergic system is an essential mechanism providing short-term adaptation to the stressful conditions of critical illnesses. In the same way, the administration of exogenous catecholamines is mandatory to support the failing circulation in acutely ill patients. In contrast to these short-term benefits, prolonged adrenergic stress is detrimental to the cardiovascular system by initiating a series of adverse effects triggering significant cardiotoxicity, whose pathophysiological mechanisms are complex and only partially elucidated. In addition to the development of myocardial oxygen supply/demand imbalance induced by the sustained activation of adrenergic receptors, catecholamines can damage cardiomyocytes by fostering mitochondrial dysfunction, via two main mechanisms. The first one is calcium overload, consecutive to β-adrenergic receptor-mediated activation of protein kinase A and subsequent phosphorylation of multiple Ca(2+)-cycling proteins. The second one is oxidative stress, primarily related to the transformation of catecholamines into "aminochromes," which undergo redox cycling in mitochondria to generate copious amounts of oxygen-derived free radicals. In turn, calcium overload and oxidative stress promote mitochondrial permeability transition and cardiomyocyte cell death, both via the apoptotic and necrotic pathways. Comparable mechanisms of myocardial toxicity, including marked oxidative stress and mitochondrial dysfunction, have been reported with the use of cocaine, a common recreational drug with potent sympathomimetic activity. The aim of the current review is to present in detail the pathophysiological processes underlying the development of catecholamine and cocaine-induced cardiomyopathy, as such conditions may be frequently encountered in the clinical practice of cardiologists and ICU specialists.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Parental effort is usually associated with high metabolism that could lead to an increase in the production of reactive oxidative species giving rise to oxidative stress. Since many antioxidants involved in the resistance to oxidative stress can also enhance immune function, an increase in parental effort may diminish the level of antioxidants otherwise involved in parasite resistance. In the present study, we performed brood size manipulation in a population of great tits (Parus major) to create different levels of parental effort. We measured resistance to oxidative stress and used a newly developed quantitative PCR assay to quantify malarial parasitaemia. We found that males with an enlarged brood had significantly higher level of malarial parasites and lower red blood cell resistance to free radicals than males rearing control and reduced broods. Brood size manipulation did not affect female parasitaemia, although females with an enlarged brood had lower red blood cell resistance than females with control and reduced broods. However, for both sexes, there was no relationship between the level of parasitaemia and resistance to oxidative stress, suggesting a twofold cost of reproduction. Our results thus suggest the presence of two proximate and independent mechanisms for the well-documented trade-off between current reproductive effort and parental survival.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The intense systemic inflammatory response characterizing septic shock is associated with an increased generation of free radicals by multiple cell types in cardiovascular and non cardiovascular tissues. The oxygen-centered radical superoxide anion (O2 .-) rapidly reacts with the nitrogen-centered radical nitric oxide (NO.) to form the potent oxidant species peroxynitrite. Peroxynitrite oxidizes multiple targets molecules, either directly or via the secondary generation of highly reactive radicals, resulting in significant alterations in lipids, proteins and nucleic acids, with significant cytotoxic consequences. The formation of peroxynitrite is a key pathophysiological mechanism contributing to the cardiovascular collapse of septic shock, promoting vascular contractile failure, endothelial and myocardial dysfunction, and is also implicated in the occurrence of multiple organ dysfunction in this setting. The recent development of various porphyrin-based pharmacological compounds accelerating the degradation of peroxynitrite has allowed to specifically address these pathophysiological roles of peroxynitrite in experimental septic shock. Such agents, including 5,10,15,20-tetrakis(4- sulfonatophenyl)porphyrinato iron III chloride (FeTTPs), manganese tetrakis(4-N-methylpyridyl)porphyrin (MnTMPyP), Fe(III) tetrakis-2-(N-triethylene glycol monomethyl ether)pyridyl porphyrin) (FP-15) and WW-85, have been shown to improve the cardiovascular and multiple organ failure in small and large animal models of septic shock. Therefore, these findings support the development of peroxynitrite decomposition catalysts as potentially useful novel therapeutic agents to restore cardiovascular function in sepsis.