177 resultados para patchouli genotypes
Resumo:
Multiple epiphyseal dysplasia (MED) is a genetically heterogeneous group of diseases characterized by variable degrees of epiphyseal abnormality primarily involving the hip and knee joints. The purpose of this study was to investigate the frequency of mutations in individuals with a clinical and radiographic diagnosis of MED and to test the hypothesis that characteristic radiological findings may be helpful in predicting the gene responsible. The radiographs of 74 Korean patients were evaluated by a panel of skeletal dysplasia experts. Six genes known to be associated with MED (COMP, MATN3, COL9A1, COL9A2, COL9A3, and DTDST) were screened by sequencing. Mutations were found in 55 of the 63 patients (87%). MATN3 mutations were found in 30 patients (55%), followed by COMP mutations in 23 (41%), and COL9A2 and DTDST mutations in one patient (2%) each. Comparisons of radiographic findings in patients with COMP and MATN3 mutations showed that albeit marked abnormalities in hip and knee joints were observed in both groups, the degree of involvement and the morphology of dysplastic epiphyses differed markedly. The contour of the pelvic acetabulum, the presence of metaphyseal vertical striations, and/or the brachydactyly of the hand were also found to be highly correlated with the genotypes. The study confirms that MATN3 and COMP are the genes most frequently responsible for MED and that subtle radiographic signs may give precious indications on which gene(s) should be prioritized for mutational screening in a given individual.
Resumo:
BACKGROUND: Hepatitis B virus (HBV) genotypes can influence treatment outcome in HBV-monoinfected and human immunodeficiency virus (HIV)/HBV-coinfected patients. Tenofovir disoproxil fumarate (TDF) plays a pivotal role in antiretroviral therapy (ART) of HIV/HBV-coinfected patients. The influence of HBV genotypes on the response to antiviral drugs, particularly TDF, is poorly understood. METHODS: HIV/HBV-co-infected participants with detectable HBV DNA prior to TDF therapy were selected from the Swiss HIV Cohort Study. HBV genotypes were identified and resistance testing was performed prior to antiviral therapy, and in patients with delayed treatment response (>6 months). The efficacy of TDF to suppress HBV (HBV DNA <20 IU/mL) and the influence of HBV genotypes were determined. RESULTS: 143 HIV/HBV-coinfected participants with detectable HBV DNA were identified. The predominant HBV genotypes were A (82 patients, 57 %); and D (35 patients, 24 %); 20 patients (14 %) were infected with multiple genotypes (3 % A + D and 11 % A + G); and genotypes B, C and E were each present in two patients (1 %). TDF completely suppressed HBV DNA in 131 patients (92 %) within 6 months; and in 12 patients (8 %), HBV DNA suppression was delayed. No HBV resistance mutations to TDF were found in patients with delayed response, but all were infected with HBV genotype A (among these, 5 patients with genotype A + G), and all had previously been exposed to lamivudine. CONCLUSION: In HIV/HBV-coinfected patients, infection with multiple HBV genotypes was more frequent than previously reported. The large majority of patients had an undetectable HBV viral load at six months of TDF-containing ART. In patients without viral suppression, no TDF-related resistance mutations were found. The role of specific genotypes and prior lamivudine treatment in the delayed response to TDF warrant further investigation.
Resumo:
Chronic exposure to airborne fungi has been associated with different respiratory symptoms and pathologies in occupational populations, such as grain workers. However, the homogeneity in the fungal species composition of these bioaerosols on a large geographical scale and the different drivers that shape these fungal communities remain unclear. In this study, the diversity of fungi in grain dust and in the aerosols released during harvesting was determined across 96 sites at a geographical scale of 560 km(2) along an elevation gradient of 500 m by tag-encoded 454-pyrosequencing of the internal transcribed spacer (ITS) sequences. Associations between the structure of fungal communities in the grain dust and different abiotic (farming system, soil characteristics, geographic and climatic parameters) and biotic (wheat cultivar, previous crop culture) factors were explored. These analyses revealed a strong relationship between the airborne and grain dust fungal communities and showed the presence of allergenic and mycotoxigenic species in most samples, which highlights the potential contribution of these fungal species to work-related respiratory symptoms of grain workers. The farming system was the major driver of the alpha and beta phylogenetic diversity of fungal communities. In addition, elevation and soil CaCO3 concentrations shaped the alpha diversity whereas wheat cultivar, cropping history and the number of freezing days per year shaped the taxonomic beta diversity of these communities.
Resumo:
Restriction site-associated DNA sequencing (RADseq) provides researchers with the ability to record genetic polymorphism across thousands of loci for nonmodel organisms, potentially revolutionizing the field of molecular ecology. However, as with other genotyping methods, RADseq is prone to a number of sources of error that may have consequential effects for population genetic inferences, and these have received only limited attention in terms of the estimation and reporting of genotyping error rates. Here we use individual sample replicates, under the expectation of identical genotypes, to quantify genotyping error in the absence of a reference genome. We then use sample replicates to (i) optimize de novo assembly parameters within the program Stacks, by minimizing error and maximizing the retrieval of informative loci; and (ii) quantify error rates for loci, alleles and single-nucleotide polymorphisms. As an empirical example, we use a double-digest RAD data set of a nonmodel plant species, Berberis alpina, collected from high-altitude mountains in Mexico.
Resumo:
Background: T reatment o f chronic hepatitis C i s evolving, a nd direct acting antivirals ( DAAs) are now a dded to p egylated interferon-α ( Peg- INF-α) and ribavirin (RBV) for the treatment o f hepatitis C v irus ( HCV) genotype 1 infection. DAAs c ause d ifferent side effects and can even worsen RBV induced hemolytic anemia. T herefore, identifying host genetic d eterminants of R BV bioavailability and therapeutic e fficacy will remain crucial for individualized treatment. Recent d ata showed associations between R BV induced h emolytic anemia and genetic polymorphisms o f concentrative nucleoside transporters s uch as C NT3 (SLC28A3) and i nosine t riphosphatase (ITPA). T o analyze t he association of genetic variants of SLC28 transporters and ITPA with RBV induced hemolytic anemia and treatment o utcome. Methods: I n our study, 173 patients f rom t he S wiss Hepatitis C C ohort Study and 2 2 patients from Swiss Association for the Study of the Liver study 24 (61% HCV g enotype 1, 3 9% genotypes 2 o r 3) were analyzed for SLC28A2 single nucleotide p olymorphism (SNP) rs11854484, SLC28A3 rs56350726 and SLC28A3 rs10868138 as well as ITPA SNPs rs1127354 and rs7270101. RBV serum levels during treatment were measured in 49 patients. Results: SLC28A2 r s11854484 genotype TT was associated with significantly higher dosage- and body weight-adjusted RBV levels as compared to genotypes TC and CC (p=0.04 and p=0.02 at weeks 4 and 8, respectively). ITPA SNPs rs1127354 and rs7270101 were associated with h emolytic a nemia both in genotype as w ell as i n allelic a nalyses. SLC28A3 rs56350726 genotype TT (vs. AT/AA, RR=2.1; 95% CI 1.1-4.1) as well as the T allele (vs. A; RR=1.8, 95% CI 1.1-3.2) were associated with increased SVR rates. The combined analysis of overall ITPA activity and SLC28 v ariants together revealed n o significant a dditive effects on either treatment-related anemia or SVR. Conclusions: T he newly identified association between RBV serum levels a nd SLC28A2 rs11854484 genotype as well as the replicated association of ITPA and SLC28A3 g enetic p olymorphisms w ith RBV induced hemolytic anemia and treatment r esponse underpin the need for further studies on host genetic d eterminants of R BV bioavailability and therapeutic e fficacy f or individualized treatment of chronic hepatitis C.
Resumo:
CYP3A4, CYP3A5 and CYP3A7 are hepatic enzymes that metabolize about 50% of drugs on the market, with a large overlap in their specificities. We investigated the genetic bases that contribute to the variation of CYP3A activity. We phenotyped 251 individuals from two independent studies (182 patients treated with methadone and 69 patients with clozapine) for CYP3A activity using the midazolam phenotyping test and genotyped them for CYP3A4, CYP3A5, and CYP3A7 genetic variants, including the single nucleotide polymorphism (SNP) rs4646437C>T in intron 7 of CYP3A4. Owing to the fact that CYP enzymes require electron transfer through the P450 oxidoreductase (POR), and functional impairment has been shown for the POR*28 SNP, this polymorphism was also analysed. We show that CYP3A4, CYP3A5 and CYP3A7 genotypes, including the SNP rs4646437C>T, do not reflect the inter-individual variability of CYP3A activity (P>0.1). In contrast, POR*28 TT genotype presents a 1.6-fold increase in CYP3A activity compared with POR*28C carriers (n = 182, P = 0.004). This finding was replicated in the second independent dataset (n = 69, P = 0.04). The SNP POR*28 seems to be a better genetic marker of the variability of total CYP3A activity in vivo than CYP3A4, CYP3A5 and CYP3A7 genetic variants.
Resumo:
Clozapine, an atypical antipsychotic, depends mainly on cytochrome P4501A2 (CYP1A2) for its metabolic clearance. CYP1A2 is inducible by smoking, and lower plasma concentrations of clozapine are measured in smokers than in nonsmokers. Case reports have been published on the effects of discontinuing smoking in patients receiving clozapine, which might lead to elevated plasma concentrations and severe side effects. We present 2 cases on the consequences of smoking cessation in patients receiving this drug. In the first patient, smoking cessation resulted, within 2 weeks, in severe sedation and fatigue, with an approximately 3-fold increase of plasma clozapine concentrations. In the second patient, a very high plasma concentration of clozapine (3004 ng/mL) was measured 6 days following a 16-day stay in a general hospital, during which smoking was prohibited. In the latter patient, the replacement of omeprazole, a strong CYP1A2 inducer, by pantoprazole, a weaker CYP1A2 inducer, could have contributed, in addition to smoking cessation, to the observed strong increase of plasma clozapine concentrations. Genotyping of the 2 patients revealed that they were carriers of the AA genotype for the -164C>A polymorphism (CYP1A2*1F) in intron 1 of CYP1A2 gene, which has previously been shown to confer a high inducibility of CYP1A2 by smoking. Thus, at the initiation of clozapine treatment, smoking patients should be informed that, if they decide to stop smoking, they are encouraged to do so but must inform their prescriber beforehand. Also, because of the increased use of no-smoking policies in many hospitals, studies examining the consequences of such policies on the pharmacokinetics/pharmacodynamics of drugs metabolized by CYP1A2, taking into account different CYP1A2 genotypes, are needed.
Exploring Parallels Between Molecular Changes Induced in PNS by Aging and Demyelinating Neuropathies
Resumo:
The peripheral nervous system (PNS) is involved in many age-dependent neurological deficits, including numbness, pain, restless legs, trouble with walking and balance that are commonly found in the elderly. These symptoms generally result from demyelination and/or loss of axonal integrity. However, the precise identity of age-regulated molecular changes in either neuronal or glial compartments of the nerve is unclear. Interestingly, these deficiencies are also present in inherited neuropathies, where the expressivity of the rapid and early onset phenotypes is undeniably more severe than in normal aging. Nevertheless, especially the molecular changes underlying loss of axonal integrity in neuropathy condition are also poorly understood. To unravel molecular mechanisms affected by PNS aging, we used wildtype mice at 17 time-points from day of birth until senescence (28 months-old). For the neuropathy study, we focused on 56 day-old Schwann cell-specific neuropathy-inducing mutants, MPZCre/1/ LpinfE2-3/fE2-3 and MPZCre/1/ScapfE1/fE1 mice, that have, at this age, already developed neuropathic symptoms. Transcriptomes of dissected Schwann cell-containing endoneurium or sensory neuron-containing dorsal root ganglia have been analyzed throughout time or genotypes, using Illumina Bead Chips. Following data validation, we identified groups of differentially expressed genes in the development, aging and in the neuropathic mutants, in both glial and neuronal compartments. We detected substantial differences in the dynamics of changes in gene expression during development and aging between these two compartments. Furthermore, considering the above-mentioned phenotypic similarities, we integrated aging and mutant data. Interestingly, we observed that there are some parallels at the molecular level between processes involved in aging, which leads to less severe and more progressive PNS alterations, and in the rapid onset peripheral neuropathies. Apart from helping the understanding of molecular alterations underlying age-related PNS phenotypes, this data should also contribute to the identification of pathways that could be used as targets for therapeutical approaches to prevent complications associated with both aging and inherited forms of neuropathies.
Resumo:
BACKGROUND:It is unknown whether specific viral polymorphisms affect in vivo therapeutic response in patients with cytomegalovirus (CMV) disease. Polymorphisms in the CMV glycoprotein B (gB) gene allow discrimination of 4 distinct genotypes (gB1-gB4). We assessed the influence of gB genotypes on the clinical and virologic outcome of CMV disease. METHODS:Solid-organ transplant recipients enrolled in a multicenter trial of CMV disease treatment (VICTOR study) were included in this study. CMV gB genotyping was performed using quantitative real-time polymerase chain reaction at day 0 (start of antiviral therapy). RESULTS:Among 239 patients with CMV disease, the prevalence of gB strain types was 26% for gB1, 10% for gB2, 10% for gB3, and 5% for gB4, whereas mixed infections were present in 49%. Donor-seropositive/recipient-seropositive patients were more likely to have mixed gB infection than donor-seropositive/recipient-seronegative patients (40% vs. 12%; P = .001). Median baseline viral loads were higher and time to viral eradication was longer ( P = .006 and P = .026 , respectively) for mixed infection versus infection with a single genotype. In a multivariate model, mixed gB infection was a significant predictor of failure to eradicate virus by day 21 (mixed vs single genotype; odds ratio, 2.66; 95% confidence interval, 1.31-5.38; P = .007 ) after controlling for baseline viral load, CMV serostatus at baseline, ganciclovir resistance, and antiviral treatment. No effect of gB genotype was seen on virologic or clinical CMV recurrence. CONCLUSIONS:No specific gB genotype appears to confer a specific CMV virulence advantage. However, mixed gB genotype infections are associated with higher viral loads and delayed viral clearance.
Resumo:
Mating with attractive or dominant males is often predicted to offer indirect genetic benefits to females, but it is still largely unclear how important such non-random mating can be with regard to embryo viability. We sampled a natural population of adult migratory brown trout (Salmo trutta), bred them in vitro in a half-sib breeding design to separate genetic from maternal environmental effects, raised 2098 embryos singly until hatching, and exposed them experimentally to different levels of pathogen stress at a late embryonic stage. We found that the embryos' tolerance to the induced pathogen stress was linked to the major histocompatibility complex (MHC) of their parents, i.e. certain MHC genotypes appeared to provide better protection against infection than others. We also found significant additive genetic variance for stress tolerance. Melanin-based dark skin patterns revealed males with 'good genes', i.e. embryos fathered by dark coloured males had a high tolerance to infection. Mating with large and dominant males would, however, not improve embryo viability when compared to random mating. We used simulations to provide estimates of how mate choice based on MHC or melanin-based skin patterns would influence embryos' tolerance to the experimentally induced pathogen stress.
Resumo:
A recent study with 69 Japanese liver transplants treated with tacrolimus found that the MDR13435 C >T polymorphism, but not the MDR12677 G >T polymorphism, was associated with differences in the intestinal expression level of CYP3A4 mRNA. In the present study, over 6 h, we measured the kinetics of a 75 microg oral dose of midazolam, a CYP3A substrate, in 21 healthy subjects genotyped for the MDR13435 C >T and 2677 G >T polymorphism. No statistically significant differences were found in the calculated pharmacokinetic parameters between the three 3435 C >T genotypes (TT, CT and CC group, respectively: Cmax (mean +/- SD: 0.30 +/- 0.08 ng/ml, 0.31 +/- 0.09 ng/ml and 0.31 +/- 0.11 ng/ml; Apparent clearance: 122 +/- 29 l/h, 156 +/- 92 l/h and 111 +/- 35 l/h; t1/2: 1.9 +/- 1.1 h, 1.6 +/- 0.90 h and 1.7 +/- 0.7 h). In addition, the 30-min 1'OH midazolam to midazolam ratio, a marker of CYP3A activity, determined in 74 HIV-positive patients before the introduction of antiretroviral treatment, was not significantly different between the three 3435 C >T genotypes (mean ratio +/- SD: 3.65 +/- 2.24, 4.22 +/- 3.49 and 4.24 +/- 2.03, in the TT, CT and CC groups, respectively). Similarly, no association was found between the MDR12677 G >T polymorphism and CYP3A activity in the healthy subjects or in the HIV-positive patients. The existence of a strong association between the activity of CYP3A and MDR13435 C >T and 2677 G >T polymorphisms appears unlikely, at least in Caucasian populations and/or in the absence of specific environmental factors.
Resumo:
While several risk factors for the histological progression of chronic hepatitis C have been identified, the contribution of HCV genotypes to liver fibrosis evolution remains controversial. The aim of the present study was to assess independent predictors for fibrosis progression. Methods: We identified 1540 patients from the Swiss Hepatitis C Cohort database with at least one liver biopsy prior to antiviral treatment. Factors associated with fibrosis stage, steatosis and histological activity were assessed in univariate and multivariate regression models. Fibrosis progression rate per year was calculated in a subgroup of 1263 patients, in whom risk factors were assessed by cumulative incidence curves, logistic and linear regression models. Results: Independent risk factors for rapid fibrosis progression included male sex (OR = 1.66, 95% CI 1.25-2.21, P <0.001), age at infection (OR = 1.08, 95% CI 1.06-1.10, P <0.001), histological activity (OR = 2.14, 95% CI 1.61-2.85, P <0.001) and genotype 3 (OR = 1.97, 95% CI 1.43-2.72, P <0.001). Genotype 2 was associated with slow progression (OR = 0.51, 95% CI 0.30-0.89, P = 0.02), but this observation may be due to the decreased prevalence of genotype 2 over the last decades, leading to an overrepresentation of subjects with genotype 2 with a slow progression rate. Conclusion: This study shows a significant association of genotype 3 with accelerated fibrosis. While assessing risk factors for fibrosis progression, the changing epidemiology of HCV genotypes over time needs to be taken into account.
Resumo:
BACKGROUND/AIM: Both steatosis and insulin resistance have been linked to accelerated fibrosis in chronic hepatitis C. Connective tissue growth factor (CTGF) plays a major role in extracellular matrix production in fibrotic disorders including cirrhosis, and its expression is stimulated in vitro by insulin and glucose. We hypothesized that CTGF may link steatosis, insulin resistance and fibrosis. METHODS: We included 153 chronic hepatitis C patients enrolled in the Swiss Hepatitis C Cohort Study and for whom a liver biopsy and plasma samples were available. CTGF expression was assessed quantitatively by immunohistochemistry. In 94 patients (57 with genotypes non-3), plasma levels of glucose, insulin and leptin were also measured. CTGF synthesis was investigated by immunoblotting on LX-2 stellate cells. RESULTS: Connective tissue growth factor expression was higher in patients with steatosis (P=0.039) and in patients with fibrosis (P=0.008) than those without these features. CTGF levels were neither associated with insulinaemia or with glycaemia, nor with inflammation. By multiple regression analysis, CTGF levels were independently associated with steatosis, a past history of alcohol abuse, plasma leptin and HCV RNA levels; when only patients with genotypes non-3 were considered, CTGF levels were independently associated with a past history of alcohol abuse, plasma leptin levels and steatosis. Leptin stimulated CTGF synthesis in LX-2 cells. CONCLUSIONS: In patients with chronic hepatitis C and steatosis, CTGF may promote fibrosis independently of inflammation. CTGF may link steatosis and fibrosis via increased leptin levels.
Resumo:
What genotype should the scientist specify for conducting a database search to try to find the source of a low-template-DNA (lt-DNA) trace? When the scientist answers this question, he or she makes a decision. Here, we approach this decision problem from a normative point of view by defining a decision-theoretic framework for answering this question for one locus. This framework combines the probability distribution describing the uncertainty over the trace's donor's possible genotypes with a loss function describing the scientist's preferences concerning false exclusions and false inclusions that may result from the database search. According to this approach, the scientist should choose the genotype designation that minimizes the expected loss. To illustrate the results produced by this approach, we apply it to two hypothetical cases: (1) the case of observing one peak for allele xi on a single electropherogram, and (2) the case of observing one peak for allele xi on one replicate, and a pair of peaks for alleles xi and xj, i ≠ j, on a second replicate. Given that the probabilities of allele drop-out are defined as functions of the observed peak heights, the threshold values marking the turning points when the scientist should switch from one designation to another are derived in terms of the observed peak heights. For each case, sensitivity analyses show the impact of the model's parameters on these threshold values. The results support the conclusion that the procedure should not focus on a single threshold value for making this decision for all alleles, all loci and in all laboratories.
Resumo:
As the evolutionary significance of hybridization is largely dictated by its extent beyond the first generation, we broadly surveyed patterns of introgression across a sympatric zone of two native poplars (Populus balsamifera, Populus deltoides) in Quebec, Canada within which European exotic Populus nigra and its hybrids have been extensively planted since the 1800s. Single nucleotide polymorphisms (SNPs) that appeared fixed within each species were characterized by DNA-sequencing pools of pure individuals. Thirty-five of these diagnostic SNPs were employed in a high-throughput assay that genotyped 635 trees of different age classes, sampled from 15 sites with various degrees of anthropogenic disturbance. The degree of admixture within sampled trees was then assessed through Bayesian clustering of genotypes. Hybrids were present in seven of the populations, with 2.4% of all sampled trees showing spontaneous admixture. Sites with hybrids were significantly more disturbed than pure stands, while hybrids comprised both immature juveniles and trees of reproductive age. All three possible F1s were detected. Advanced-generation hybrids were consistently biased towards P. balsamifera regardless of whether hybridization had occurred with P. deltoides or P. nigra. Gene exchange between P. deltoides and P. nigra was not detected beyond the F1 generation; however, detection of a trihybrid demonstrates that even this apparent reproductive isolation does not necessarily result in an evolutionary dead end. Collectively, results demonstrate the natural fertility of hybrid poplars and suggest that introduced genes could potentially affect the genetic integrity of native trees, similar to that arising from introgression between natives.