83 resultados para oxygen delignification
Resumo:
INTRODUCTION. Reduced cerebral perfusion pressure (CPP) may worsen secondary damage and outcome after severe traumatic brain injury (TBI), however the optimal management of CPP is still debated. STUDY HYPOTHESIS: We hypothesized that the impact of CPP on outcome is related to brain tissue oxygen tension (PbtO2) level and that reduced CPP may worsen TBI prognosis when it is associated with brain hypoxia. DESIGN. Retrospective analysis of prospective database. METHODS. We analyzed 103 patients with severe TBI who underwent continuous PbtO2 and CPP monitoring for an average of 5 days. For each patient, duration of reduced CPP (\60 mm Hg) and brain hypoxia (PbtO2\15 mm Hg for[30 min [1]) was calculated with linear interpolation method and the relationship between CPP and PbtO2 was analyzed with Pearson's linear correlation coefficient. Outcome at 30 days was assessed with the Glasgow Outcome Score (GOS), dichotomized as good (GOS 4-5) versus poor (GOS 1-3). Multivariable associations with outcome were analyzed with stepwise forward logistic regression. RESULTS. Reduced CPP (n=790 episodes; mean duration 10.2 ± 12.3 h) was observed in 75 (74%) patients and was frequently associated with brain hypoxia (46/75; 61%). Episodes where reduced CPP were associated with normal brain oxygen did not differ significantly between patients with poor versus those with good outcome (8.2 ± 8.3 vs. 6.5 ± 9.7 h; P=0.35). In contrast, time where reduced CPP occurred simultaneously with brain hypoxia was longer in patients with poor than in those with good outcome (3.3±7.4 vs. 0.8±2.3 h; P=0.02). Outcome was significantly worse in patients who had both reduced CPP and brain hypoxia (61% had GOS 1-3 vs. 17% in those with reduced CPP but no brain hypoxia; P\0.01). Patients in whom a positive CPP-PbtO2 correlation (r[0.3) was found also were more likely to have poor outcome (69 vs. 31% in patients with no CPP-PbtO2 correlation; P\0.01). Brain hypoxia was an independent risk factor of poor prognosis (odds ratio for favorable outcome of 0.89 [95% CI 0.79-1.00] per hour spent with a PbtO2\15 mm Hg; P=0.05, adjusted for CPP, age, GCS, Marshall CT and APACHE II). CONCLUSIONS. Low CPP may significantly worsen outcome after severe TBI when it is associated with brain tissue hypoxia. PbtO2-targeted management of CPP may optimize TBI therapy and improve outcome of head-injured patients.
Resumo:
In higher plants such as Arabidopsis thaliana, omega-3 trienoic fatty acids (TFAs), represented mainly by alpha-linolenic acid, serve as precursors of jasmonic acid (JA), a potent lipid signal molecule essential for defense. The JA-independent roles of TFAs were investigated by comparing the TFA- and JA-deficient fatty acid desaturase triple mutant (fad3-2 fad7-2 fad8 (fad3 fad7 fad8)) with the aos (allene oxide synthase) mutant that contains TFAs but is JA-deficient. When challenged with the fungus Botrytis, resistance of the fad3 fad7 fad8 mutant was reduced when compared with the aos mutant, suggesting that TFAs play a role in cell survival independently of being the precursors of JA. An independent genetic approach using the lesion mimic mutant accelerated cell death2 (acd2-2) confirmed the importance of TFAs in containing lesion spread, which was increased in the lines in which the fad3 fad7 fad8 and acd2-2 mutations were combined when compared with the aos acd2-2 lines. Malondialdehyde, found to result from oxidative TFA fragmentation during lesion formation, was measured by gas chromatography-mass spectrometry. Its levels correlated with the survival of the tissue. Furthermore, plants lacking TFAs overproduced salicylic acid (SA), hydrogen peroxide, and transcripts encoding several SA-regulated and SA biosynthetic proteins. The data suggest a physiological role for TFAs as sinks for reactive oxygen species.
Resumo:
Mitochondrial reactive oxygen species generation has been implicated in the pathophysiology of ischemia-reperfusion (I/R) injury; however, its exact role and its spatial-temporal relationship with inflammation are elusive. Herein we explore the spatial-temporal relationship of oxidative/nitrative stress and inflammatory response during the course of hepatic I/R and the possible therapeutic potential of mitochondrial-targeted antioxidants, using a mouse model of segmental hepatic ischemia-reperfusion injury. Hepatic I/R was characterized by early (at 2h of reperfusion) mitochondrial injury, decreased complex I activity, increased oxidant generation in the liver or liver mitochondria, and profound hepatocellular injury/dysfunction with acute proinflammatory response (TNF-α, MIP-1α/CCL3, MIP-2/CXCL2) without inflammatory cell infiltration, followed by marked neutrophil infiltration and a more pronounced secondary wave of oxidative/nitrative stress in the liver (starting from 6h of reperfusion and peaking at 24h). Mitochondrially targeted antioxidants, MitoQ or Mito-CP, dose-dependently attenuated I/R-induced liver dysfunction, the early and delayed oxidative and nitrative stress response (HNE/carbonyl adducts, malondialdehyde, 8-OHdG, and 3-nitrotyrosine formation), and mitochondrial and histopathological injury/dysfunction, as well as delayed inflammatory cell infiltration and cell death. Mitochondrially generated oxidants play a central role in triggering the deleterious cascade of events associated with hepatic I/R, which may be targeted by novel antioxidants for therapeutic advantage.
Resumo:
To compare the effect of hyperthermia on maximal oxygen uptake (VO2max) in men and women, VO2max was measured in 11 male and 11 female runners under seven conditions involving various ambient temperatures (Ta at 50% RH) and preheating designed to manipulate the esophageal (Tes) and mean skin (Tsk) temperatures at VO2max. The conditions were: 25 degrees C, no preheating (control); 25, 35, 40, and 45 degrees C, with exercise-induced preheating by a 20-min walk at approximately 33% of control VO2max; 45 degrees C, no preheating; and 45 degrees C, with passive preheating during which Tes and Tsk were increased to the same degree as at the end of the 20-min walk at 45 degrees C. Compared to VO2max (l x min(-1)) in the control condition (4.52+/-0.46 in men, 3.01+/-0.45 in women), VO2max in men and women was reduced with exercise-induced or passive preheating and increased Ta, approximately 4% at 35 degrees C, approximately 9% at 40 degrees C and approximately 18% at 45 degrees C. Percentage reductions (7-36%) in physical performance (treadmill test time to exhaustion) were strongly related to reductions in VO2max (r=0.82-0.84). The effects of hyperthermia on VO2max and physical performance in men and women were almost identical. We conclude that men and women do not differ in their thermal responses to maximal exercise, or in the relationship of hyperthermia to reductions in VO2max and physical performance at high temperature. Data are reported as mean (SD) unless otherwise stated.
Resumo:
Inconsistencies about dynamic asymmetry between the on- and off-transient responses in VO2 are found in the literature. Therefore the purpose of this study was to examine VO2 on- and off-transients during moderate- and heavy-intensity cycling exercise in trained subjects. Ten men underwent an initial incremental test for the estimation of ventilatory threshold (VT) and, on different days, two bouts of square-wave exercise at moderate (<VT) and heavy (>VT) intensities. VO2 kinetics in exercise and recovery were better described by a single exponential model (<VT), or by a double exponential with two time delays (>VT). For moderate exercise, we found a symmetry of VO2 kinetics between the on- and off-transients (i.e., fundamental component), consistent with a system manifesting linear control dynamics. For heavy exercise, a slow component superimposed on the fundamental phase was expressed in both the exercise and recovery, with similar parameter estimates. But the on-transient values of the time constant were appreciably faster than the associated off-transient, and independent of the work rate imposed (<VT and >VT). Our results do not support a dynamically linear system model of VO2 during cycling exercise in the heavy-intensity domain.
Resumo:
Stable carbon and oxygen isotope analyses were conducted on pedogenic needle fibre calcite (NFC) from seven sites in areas with roughly similar temperate climates in Western Europe, including the Swiss Jura Mountains, eastern and southern France, northern Wales, and north-eastern Spain. The δ(13)C values (-12.5 to-6.8 0/00 Vienna Pee Dee Belemnite (VPDB)) record the predominant C(3) vegetation cover at the sites. A good correlation was found between mean monthly climatic parameters (air temperature, number of frost days, humidity, and precipitation) and δ(18)O values (-7.8 to-3.40/00 VPDB) of all the NFC. Similar seasonal variations of δ(18)O values for monthly NFC samples from the Swiss sites and those of mean monthly δ(18)O values of local precipitation and meteorological data point out precipitation and preferential growth/or recrystallisation of the pedogenic needle calcite during dry seasons. These covariations indicate the potential of stable isotope compositions of preserved NFC in fossil soil horizons as a promising tool for palaeoenvironmental reconstructions.
Resumo:
A low digit ratio (2D:4D) and low 2D:4D in the right compared with the left hand (right-left 2D:4D) are thought to be determined by high in utero concentrations of testosterone, and are related to "masculine" traits such as aggression and performance in sports like running and rugby. Low right-left 2D:4D is also related to sensitivity to testosterone as measured by the number of cytosine-adenine-guanine triplet repeats in exon 1 of the androgen receptor gene. Here we show that low right-left 2D:4D is associated with high maximal oxygen uptake (VO2(max)), high velocity at VO2(max), and high maximum lactate concentration in a sample of teenage boys. We suggest that low right-left 2D:4D is linked to performance in some sports because it is a proxy of high sensitivity to prenatal and maybe also circulating testosterone and high VO2(max).
Resumo:
The effect of acute intravenous dopamine (DA) administration at three sequential (but randomized) infusion rates was studied in eight young male volunteers. DA was infused at 2.5, 5, and 10 micrograms.kg-1.min-1. O2 consumption (VO2) and CO2 production (VCO2) were measured continuously by means of a computerized indirect calorimeter (blood system). In response to the 5- and 10-micrograms.kg-1.min-1 DA infusion rates, a significant increase (P less than 0.01) in VO2 corresponding to a 6% (range, 3-10) and 15% (range, 12-23) increase, respectively, of preinfusion values was observed. In contrast, at the low dose (2.5 micrograms.kg-1.min-1), DA induced no significant change in VO2. Cardiac output (Qc) increased significantly after the three DA administration rates [19% (range, 0-42), 34% (range, 17-71), and 25% (range, -3 to +47)] for the doses 2.5, 5, and 10 micrograms.-kg-1.min-1, respectively. The increase in O2 delivery (QO2) outweighed VO2 at all administration rates despite the relative drop in QO2 at the maximal DA administration rate. These results indicate that in humans DA improves net O2 supply to tissues proportionally more than it increases VO2 at all doses used in the present study.
Resumo:
The analysis by electron microprobe allows the evaluation of the quantity of Fe3+ ih spinels with considerable errors. The use of a correction equation which is based on a the calibration of analyses with an electron microprobe in relation to those carried out with Mossbauer spectroscopy gives more precise evaluations of Fe3+. In fact, it allows a calculation of the oxygen fugacity in peridotitic xenoliths. The obtained results show that peridotites of the French Central Massif crystallised under oxygen fugacities which were higher than those of the Moroccan Anti-Atlas.
Resumo:
Oxidative metabolism of isolated toad skin epithelium (Bufo viridis) was investigated in vitro under open-circuit conditions using the spectrophotometric oxyhemoglobin micromethod. This highly sensitive technique has been adapted for studying several epithelia in parallel and for detecting possible regional variations of oxygen uptake in individual epithelium. Changes in the proportion of mitochondria-rich cells (MRC) by ionic acclimation affected oxidative metabolism under nontransporting condition. After acclimation of animals to either NaNO3 or NaCl solutions (100 mmol/l, for greater than 2 wk), the number of MRC per square millimeter in epithelia from nonacclimated and NaNO3- and NaCl-acclimated animals was 350 +/- 113, 460 +/- 196, and 107 +/- 52, respectively. O2 uptake of nonacclimated and NaNO3-acclimated epithelia was significantly higher than that of NaCl-acclimated epithelia (i.e., 0.89 and 0.90 vs. 0.57 nmol O2.h-1.mm-2, respectively). The correlation established between O2 uptake and number of MRC allowed evaluation of the respiration rate of one single MRC, i.e., approximately 1 pmol O2/h. The lowest mitochondrial oxidative activity was found in the epithelia from NaCl-acclimated toads where the uncoupler 2,4-dinitrophenol (50 mumols/l) had the highest relative stimulatory effect (+114%). Acetazolamide (50 mumols/l), a potent inhibitor of carbonic anhydrase mainly present in the MRC, reduced selectively by 31% O2 uptake of the MRC-rich epithelia (NaNO3 acclimated). O2 uptake increased significantly by approximately 80% when basolateral pH increased from 5.8 to 7.8, but did not depend on apical pH. These findings indicate that under nontransporting (open-circuit) conditions, aerobic metabolism of the isolated toad skin epithelium is related to the density and/or characteristics of the MRC.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
The Hamersley province of northwest Australia is one of the world's premier iron ore regions with high-grade martite-microplaty hematite iron ore deposits mostly hosted within banded iron formation (BIF) sequences of the Brockman Iron Formations of the Hamersley Group. These high-grade iron ores contain between 60 and 68 wt percent Fe, and formed by the multistage interaction of hydrothermal fluids with the host BIF formation. The oxygen isotope compositions of magnetite and hematite from BIF, hydrothermal alteration assemblages, and high-grade iron Ore were analyzed from the Mount Tom Price, Paraburdoo, and Charmar iron ore deposits. The delta(18)O values of magnetite and hematite from hydrothermal alteration assemblages and high-grade iron ore range from -9.0 to -2.9 per mil, a depletion of 5 to 15 per mil relative to the host BIF. The delta(18)O values are spatially controlled by faults within the deposits, a response to higher fluid flux and larger influence the isotopic compositions by the hydrothermal fluids. The oxygen isotope composition of hydrothermal fluids (delta(18)O(fluid)) indicates that the decrease in the (18)O content of iron oxides was due to the interaction of both basinal brines and meteoric fluids with the original BIF. Late-stage talc-bearing ore at the Mount Tom Price deposit formed in the presence of a pulse of delta(18)O-enriched basinal brine, indicating that hydrothermal fluids may have repeatedly interacted with the BIFs during the Paleoproterozoic.
Resumo:
A method has been developed for the determination of the oxygen uptake of small areas (0.01 mm2) in an entire chick embryo cultured in vitro under defined metabolic conditions. It is based on the recordings of the spectral changes of the hemoglobin used as oxygen source for the respiring tissue (Barzu and Borza, 1967). Rapid scanning of the hemoglobin absorbance over the preparation allows a comparison of the O2 uptake of various regions. Values of the order of 10(-2) 1 O2 . min-2 are measured in less than 10 sec with a spatial resolution of 100 micron. The differentiation of embryonic tissue is not disturbed by the measurements. The O2 diffusion in the media and in the tissue has been analyzed by digital simulation. The O2 uptake of the Hensen's node was measured from embryos starting at the stage of definitive primitive streak (stage 4) up to the stage of 10 somites. It increases from 0.6 to 1.1 nl . h-1 with a marked acceleration between stages 4 and 5. The values corrected for the protein content of the Hensen's node at stage 4, 5, 6 and 8 are 32, 30 and 28 microliter . mg-1 . h-1 respectively. The first scanning results show different patterns of the O2 utake at the level of the Hensen's node and of the neural plate. At stage 6-7, the corrected O2 uptake is 30 microliter . mg-1 . h-1 for . the former and 43 microliter . mg-1 . h-1 for the latter.