220 resultados para nonmajor histocompatibility complex gene


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluorescence-labeled soluble major histocompatibility complex class I-peptide "tetramers" constitute a powerful tool to detect and isolate antigen-specific CD8(+) T cells by flow cytometry. Conventional "tetramers" are prepared by refolding of heavy and light chains with a specific peptide, enzymatic biotinylation at an added C-terminal biotinylation sequence, and "tetramerization" by reaction with phycoerythrin- or allophycocyanin-labeled avidin derivatives. We show here that such preparations are heterogeneous and describe a new procedure that allows the preparation of homogeneous tetra- or octameric major histocompatibility complex-peptide complexes. These compounds were tested on T1 cytotoxic T lymphocytes (CTLs), which recognize the Plasmodium berghei circumsporzoite peptide 252-260 (SYIPSAEKI) containing photoreactive 4-azidobenzoic acid on Lys(259) in the context of H-2K(d). We report that mutation of the CD8 binding site of K(d) greatly impairs the binding of tetrameric but not octameric or multimeric K(d)-PbCS(ABA) complexes to CTLs. This mutation abolishes the ability of the octamer to elicit significant phosphorylation of CD3, intracellular calcium mobilization, and CTL degranulation. Remarkably, however, this octamer efficiently activates CTLs for Fas (CD95)-dependent apoptosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CD8+ cytotoxic T lymphocyte (CTL) can recognize and kill target cells that express only a few cognate major histocompatibility complex class I-peptide (pMHC) complexes. To better understand the molecular basis of this sensitive recognition process, we studied dimeric pMHC complexes containing linkers of different lengths. Although dimers containing short (10-30-A) linkers efficiently bound to and triggered intracellular calcium mobilization and phosphorylation in cloned CTL, dimers containing long linkers (> or = 80 A) did not. Based on this and on fluorescence resonance energy transfer experiments, we describe a dimeric binding mode in which two T cell receptors engage in an anti-parallel fashion two pMHC complexes facing each other with their constant domains. This binding mode allows integration of diverse low affinity interactions, which increases the overall binding and, hence, the sensitivity of antigen recognition. In proof of this, we demonstrated that pMHC dimers containing one agonist and one null ligand efficiently activate CTL, corroborating the importance of endogenous pMHC complexes in antigen recognition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Odours of vertebrates often contain information about the major histocompatibility complex (MHC), and are used in kin recognition, mate choice or female investment in pregnancy. It is, however, still unclear whether MHC-linked signals can also affect male reproductive strategies. We used horses (Equus caballus) to study this question under experimental conditions. Twelve stallions were individually exposed either to an unfamiliar MHC-similar mare and then to an unfamiliar MHC-dissimilar mare, or vice versa. Each exposure lasted over a period of four weeks. Peripheral blood testosterone levels were determined weekly. Three ejaculates each were collected in the week after exposure to both mares (i.e. in the ninth week) to determine mean sperm number and sperm velocity. We found high testosterone levels when stallions were kept close to MHC-dissimilar mares and significantly lower ones when kept close to MHC-similar mares. Mean sperm number per ejaculate (but not sperm velocity) was positively correlated to mean testosterone levels and also affected by the order of presentation of mares: sperm numbers were higher if MHC-dissimilar mares were presented last than if MHC-similar mares were presented last. We conclude that MHC-linked signals influence testosterone secretion and semen characteristics, two indicators of male reproductive strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Résumé : Les mécanismes de sélection sexuelle, en particulier la compétition entre mâles (sélection inter-sexuelle) et le choix des femelles (sélection intra-sexuelle), peuvent fortement influencer le succès reproducteur d'un individu, c'est-à-dire son nombre de descendants. On observe ainsi que les mâles dominants et les mâles élaborant des caractères sexuels secondaires marqués ont un succès reproducteur élevé. Toutefois, le succès reproducteur ne suffit pas pour garantir une contribution génétique élevée, parce que la fitness dépend également de la performance des descendants (c'est-à-dire de leur survie et de leur propre succès reproducteur). Si cette performance dépend en partie des gènes paternels, les males ont un avantage certain à signaler leur qualité aux femelles afin d'atteindre des taux de reproduction élevé. Ce mécanisme de signalisation est connu sous le nom de 'good genes hypothesis', toutefois très peu d'études ont clairement démontré le lien entre la qualité génétique des individus et la signalisation. De plus, la performance des descendants peut aussi dépendre des effets génétiques de compatibilité entre mâles et femelles ('compatible genes'). C'est-à-dire que certains allèles paternels n'apporteraient un avantage aux descendants qu'en combinaison avec certains allèles maternels. Nous avons déterminé, durant la période de reproduction, le statut de dominance des mâles pour deux espèces de poissons d'eau douce : la truite (Salmo trotta) et le vairon (Phoxinus phoxinus), puis nous avons évalué la relation entre le succès reproducteur et le statut de dominance et/ou la quantité de signalisation des caractères sexuels secondaires. Nous avons également fécondés artificiellement des oeufs de truites et de corégones (Coregonus palaea), en croisant chaque mâle avec chaque femelle (full-factorial breeding design). Ce type de design autorise la quantification précise des effets génétiques et permet de séparer les effets de 'good genes' et de 'compatible genes'. Cela a été fait sous différentes intensités de stress bactérien, ainsi que dans des conditions naturelles, et nous avons pu ainsi tester si certains indicateurs de qualité génétique des mâles ('good genes') étaient liés a) à la dominance et/ou b) à l'expression des caractères sexuels secondaires des mâles comme l'intensité mélanique ou la taille des tubercules sexuels. En outre, nous cherchons à savoir si la survie des descendants est liée à certaines combinaison des gènes du complexe d'histocompatibilité majeur (MHC) et/ou à la parenté génétique des parents, les deux traits étant soupçonnés d'avoir des influences génétique de compatibilité (`compatible genes') à la performance des descendants. Nous avons constaté que la dominance des mâles est directement liée à la taille et au poids des mâles (truites, vairons), mais également aux caractères sexuels secondaires (tubercules). De plus, les mâles vairons dominant ont eu un succès de fécondation plus élevés que les mâles subordonnés. Nous montrons que les truites et corégones mâles diffèrent dans leur qualité génétique, qui a été mesurée avéc la survie embryonnaire, le temps avant l'éclosion et enfin la croissance juvénile. Contrairement aux prédictions, la dominance (ou les traits indicatifs de dominance) n'était liée à la qualité génétique, dans aucun des traitements, et ne fonctionne donc pas comme indicateur de qualité. Par contre, la qualité génétique était liée aux caractères sexuels secondaires, particulièrement par la teinte mélanique chez les truites. Les embryons de truites issus de pères sombres survivaient mieux que ceux issus de pères clairs dans des environnements difficiles, de plus leur croissance était plus élevée lors de leur première année dans des conditions naturelles. La taille des juvéniles lors de leur première année est un trait important lié au succès dans la compétition pour des ressources telles qu'abri ou nourriture. De plus, les femelles truites peuvent augmenter la survie de leurs descendants en choisissant des mâles selon leur type de MHC ou selon leur degré de parenté. En outre, chez les corégones, la morphologie des tubercules sexuels ne semble pas signaler la qualité génétique. Nous avons également remarqué que l'exposition à des pathogènes non-létaux pouvait influencer la performance des alevins à court et long terme, probablement en affaiblissant leur système immunitaire. Cette thèse montre que les mâles diffèrent dans leur qualité génétique et que différents mécanismes de sélection inter- ou intra-sexuelle (par exemple la préférence pour des mâles sombres, pour des génotypes MHC ou pour des couples avec degré de parenté basse) pouvait avoir un effet positif sur la qualité des descendants, bien que cet effet génétique pouvait changer au cours du temps et entre différents environnements. Contrairement à nos attentes, le résultat de la compétition intra-sexuelle (la hiérarchie de dominance entre mâles) n'était pas lié à la qualité génétique individuelle ('good genes'). Dans ce sens, ce travail permet également de contribuer à l'explication du fait que la sélection sexuelle, de par sa forte sélection directionnelle, ne conduit pas à la diminution de la variance génétique, mais plutôt à la maintenance du polymorphisme génétique. Summary : Sexual selection mechanisms, especially male-male competition (inteasexual selection) and female mate choice (inteasexual selection), can strongly influence individual mating success, often resulting in dominant males and males with elaborate secondary sexual characters having higher fertilisation success. However, siring a high number of offspring alone does not guarantee high individual fitness, as fitness does also strongly depend on offspring performance (i.e. survival, fecundity). If this superiority in offspring performance depends on paternally inherited genes, the fathers are expected to signal this potential indirect benefit to females in order to attain high mating rates. This mechanism is also known as the 'good genes' hypothesis of sexual selection but until now most studies failed to conclusively show the relation of an individual genetic quality and its potential signalling traits. Further, offspring performance could also depend on compatible gene effects. These are alleles that increase offspring performance only in combination with other specific alleles. We first determined male dominance status from intrasexual competition during mating season for brown trout (Salmo trutta) and European minnows (Phoxinus phoxinus). For minnows we additionally checked if dominance and/or secondary sexual traits were linked to fertilisation success. Further, we artificially fertilised brown trout and alpine whitefish (Coregonus palaea) eggs, following full factorial breeding designs, enabling to properly measure `good gene' and `compatible gene' effects on offspring performance. This was done under different intensities of natural stressors, as well as under natural conditions. This procedure allowed us to test if the obtained male genetic quality measures (good genes effects) were indicated by a) dominance or lay traits linked to dominance and/or by b) secondary sexual characteristics such as melanin-based male skin darkness or breeding tubercles. Further, we investigated if offspring survival was linked to the MHC (major histocompatibility complex) gene combinations and/or to the parental genetic relatedness, as both traits were shown to have 'compatible gene' effects that may influence offspring performance. We found that male dominance in intrasexual competition was positively linked to body size, body weight (brown trout, minnows) but also to elaborate secondary sexual characteristics (breeding tubercles in minnows). Further, dominant minnow males did have an increased fertilisation success compared to subordinate ones. We show that brown trout and whitefish males do usually differ in their genetic quality, which was measured as embryo survival, hatching timing and finally as juvenile growth. Contrary to prediction male dominance or dominance indicating traits do not function as a quality signal as they were not linked to genetic quality. This result was constant when measuring genetic quality under different levels of natural stressors and under natural conditions (brown trout). On the other hand genetic quality seemed to be indicated by secondary sexual characteristics, specifically by melanin-based skin darkness in brown trout as brown trout embryos sired by darker fathers had increased survival rates when raised under harsh conditions and. they grew larger as juveniles after one year of growth in a natural stream, which is an important trait influencing success of juveniles in competition for hidings, food and other resources. Furthermore, brown trout females may increase the survival of their embryos when choosing males according to their MHC genotypes or to the general genetic relatedness between themselves and their potential mates. In whitefish on the other hand breeding tubercle morphology did not seem to signal genetic quality. Eventually, we saw that anon-lethal exposure to pathogens might influence short term and long term offspring performance probably by weakening an exposed individual's immune system. This thesis shows that males usually differ in their genetic quality and that different inter- or intrasexual selection mechanisms (e.g. mate selection favouring dark males, preference for MHC genotype combinations or for unrelated mates) may have strong positive effects on genetically dependent offspring performance but that such genetìc effects can change over time and environments. In contrast to our a priori expectations, the outcome of intrasexual selection, namely male dominance hierarchies, with dominant males often having high fertilisation success, was not linked to individual genetic quality (`good genes'). In this sense the present thesis may also be a helpful contribution to understand why sexual selection does not lead to rapid loss of genetic variation by strong directional selection but could even lead to the maintenance of genetic variation in natural populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The CD8 molecule is a glycoprotein expressed on a subset of mature T lymphocytes. It has been postulated to be a receptor for class I major histocompatibility complex molecules. In the mouse, CD8 is a heterodimer composed of Ly-2 and Ly-3 chains. We have isolated and analyzed cDNA and cosmid clones corresponding to the Ly-3 subunit. One of the isolated, cosmid clones was subsequently transfected, alone or in combination with the Ly-2 gene, into mouse Ltk- cells. Analysis of the Ly-2,3 molecules expressed at the surface of the double transfectants indicated that they are serologically and biochemically indistinguishable from their normal counterparts expressed on lymphoid cells. Ltk- cells transfected with the Ly-2 gene alone were shown to react with a subset of anti-CD8 monoclonal antibodies whereas Ly-3 transfectants did not stain with any of the anti-Ly-3 antibodies employed in this study. Since at least one of these antibodies (53-5.8) has been previously shown to recognize an epitope which is retained on the Ly-3 subunit after dissociation of the heterodimeric Ly-2,3 complex, these observations suggest that the expression of the Ly-2 polypeptide is required to permit the detectable cell surface expression of the antigenic determinants carried by the Ly-3 subunit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The generation of an antigen-specific T-lymphocyte response is a complex multi-step process. Upon T-cell receptor-mediated recognition of antigen presented by activated dendritic cells, naive T-lymphocytes enter a program of proliferation and differentiation, during the course of which they acquire effector functions and may ultimately become memory T-cells. A major goal of modern immunology is to precisely identify and characterize effector and memory T-cell subpopulations that may be most efficient in disease protection. Sensitive methods are required to address these questions in exceedingly low numbers of antigen-specific lymphocytes recovered from clinical samples, and not manipulated in vitro. We have developed new techniques to dissect immune responses against viral or tumor antigens. These allow the isolation of various subsets of antigen-specific T-cells (with major histocompatibility complex [MHC]-peptide multimers and five-color FACS sorting) and the monitoring of gene expression in individual cells (by five-cell reverse transcription-polymerase chain reaction [RT-PCR]). We can also follow their proliferative life history by flow-fluorescence in situ hybridization (FISH) analysis of average telomere length. Recently, using these tools, we have identified subpopulations of CD8+ T-lymphocytes with distinct proliferative history and partial effector-like properties. Our data suggest that these subsets descend from recently activated T-cells and are committed to become differentiated effector T-lymphocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heart transplantation is the treatment of choice for many patients with end-stage heart failure. Its success, however, is limited by organ shortage, side effects of immunosuppressive drugs, and chronic rejection. Gene therapy is conceptually appealing for applications in transplantation, as the donor organ is genetically manipulated ex vivo before transplantation. Localised expression of immunomodulatory genes aims to create a state of immune privilege within the graft, which could eliminate the need for systemic immunosuppression. In this review, recent advances in the development of gene therapy in heart transplantation are discussed. Studies in animal models have demonstrated that genetic modification of the donor heart with immunomodulatory genes attenuates ischaemia-reperfusion injury and rejection. Alternatively, bone marrow-derived cells genetically engineered with donor-type major histocompatibility complex (MHC) class I or II promote donor-specific hyporesponsiveness. Genetic engineering of naïve T cells or dendritic cells may induce regulatory T cells and regulatory dendritic cells. Despite encouraging results in animal models, however, clinical gene therapy trials in heart transplantation have not yet been started. The best vector and gene to be delivered remain to be identified. Pre-clinical studies in non-human primates are needed. Nonetheless, the potential of gene therapy as an adjunct therapy in transplantation is essentially intact.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gene duplication and neofunctionalization are known to be important processes in the evolution of phenotypic complexity. They account for important evolutionary novelties that confer ecological adaptation, such as the major histocompatibility complex (MHC), a multigene family crucial to the vertebrate immune system. In birds, two MHC class II β (MHCIIβ) exon 3 lineages have been recently characterized, and two hypotheses for the evolutionary history of MHCIIβ lineages were proposed. These lineages could have arisen either by 1) an ancient duplication and subsequent divergence of one paralog or by 2) recent parallel duplications followed by functional convergence. Here, we compiled a data set consisting of 63 MHCIIβ exon 3 sequences from six avian orders to distinguish between these hypotheses and to understand the role of selection in the divergent evolution of the two avian MHCIIβ lineages. Based on phylogenetic reconstructions and simulations, we show that a unique duplication event preceding the major avian radiations gave rise to two ancestral MHCIIβ lineages that were each likely lost once later during avian evolution. Maximum likelihood estimation shows that following the ancestral duplication, positive selection drove a radical shift from basic to acidic amino acid composition of a protein domain facing the α-chain in the MHCII α β-heterodimer. Structural analyses of the MHCII α β-heterodimer highlight that three of these residues are potentially involved in direct interactions with the α-chain, suggesting that the shift following duplication may have been accompanied by coevolution of the interacting α- and β-chains. These results provide new insights into the long-term evolutionary relationships among avian MHC genes and open interesting perspectives for comparative and population genomic studies of avian MHC evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We used stepwise photochemical cross-linking for specifically assembling soluble and covalent complexes made of a T-cell antigen receptor (TCR) and a class I molecule of the major histocompatibility complex (MHC) bound to an antigenic peptide. For that purpose, we have produced in myeloma cells a single-chain Fv construct of a TCR specific for a photoreactive H-2Kd-peptide complex. Photochemical cross-linking of this TCR single-chain Fv with a soluble form of the photoreactive H-2Kd-peptide ligand resulted in the formation of a ternary covalent complex. We have characterized the soluble ternary complex and showed that it reacted with antibodies specific for epitopes located either on the native TCR or on the Kd molecules. By preventing the fast dissociation kinetics observed with most T cell receptors, this approach provides a means of preparing soluble TCR-peptide-MHC complexes on large-scale levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural killer (NK) cellsexpress receptors specific for class I major histocompatibility complex (MHC) molecules. In the mouse, the class I specific receptors identified to date belong to the polymorphic Ly49 receptor family. Engagement of Ly49 receptors with their respective MHC ligands results in negative regulation of NK cell effector functions, consistent with a critical role of these receptors in "missing self" recognition. The Ly49 receptors analyzed so far are clonally distributed such that multiple distinct Ly49 receptors can be expressed by individual NK cells (for review see refs. 1-3). The finding that most NK cells that express the Ly49A receptor do so from a single Ly49A allele (whereby expression can occur from the maternal or the paternal chromosome) may thus reflect a putative receptor distribution process that restricts the number of Ly49 receptors expressed in a single NK cell (3-5).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comparison of T cell receptor alpha and beta-chain genes in murine major histocompatibility complex (MHC) class I and class II-restricted T cell clones and hybridomas recognizing different antigens indicates that no simple correlation exists between the observed antigen/MHC specificity and the expression of certain alpha and beta-chain heterodimers. We have attempted to establish a possible correlation by analyzing T cell receptor beta chain gene rearrangements and V beta gene usage in five T cell hybridomas with identical antigen/MHC specificity and another hybridoma recognizing a different antigenic determinant in association with the same restriction molecule. We report here that in each of the five clones a uniquely rearranged beta chain gene is expressed in combination with at least two different V beta gene segments. The presence of the differently rearranged T cell receptor beta chain genes correlated with the finding of distinct fine specificity pattern of antigen recognition in each of the hybridomas. Interestingly, two hybridomas specific for different epitopes showed identical beta chain D-J rearrangements indicating that the differences might be encoded by the alpha chain gene or/and the V beta gene element.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Major histocompatibility complex class II (MHCII) expression is regulated by the transcriptional coactivator CIITA. Positive selection of CD4(+) T cells is abrogated in mice lacking one of the promoters (pIV) of the Mhc2ta gene. This is entirely due to the absence of MHCII expression in thymic epithelia, as demonstrated by bone marrow transfer experiments between wild-type and pIV(-/-) mice. Medullary thymic epithelial cells (mTECs) are also MHCII(-) in pIV(-/-) mice. Bone marrow-derived, professional antigen-presenting cells (APCs) retain normal MHCII expression in pIV(-/-) mice, including those believed to mediate negative selection in the thymic medulla. Endogenous retroviruses thus retain their ability to sustain negative selection of the residual CD4(+) thymocytes in pIV(-/-) mice. Interestingly, the passive acquisition of MHCII molecules by thymocytes is abrogated in pIV(-/-) mice. This identifies thymic epithelial cells as the source of this passive transfer. In peripheral lymphoid organs, the CD4(+) T-cell population of pIV(-/-) mice is quantitatively and qualitatively comparable to that of MHCII-deficient mice. It comprises a high proportion of CD1-restricted natural killer T cells, which results in a bias of the V beta repertoire of the residual CD4(+) T-cell population. We have also addressed the identity of the signal that sustains pIV expression in cortical epithelia. We found that the Jak/STAT pathways activated by the common gamma chain (CD132) or common beta chain (CDw131) cytokine receptors are not required for MHCII expression in thymic cortical epithelia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

T lymphocytes reactive with the product of the Mlsa-allele of the minor lymphocyte stimulating (Mls) locus use a predominant T-cell receptor beta-chain variable gene segment (V beta 6). Such V beta 6-bearing T cells are selectively eliminated in the thymus of Mlsa-bearing mice, consistent with a model in which tolerance to self antigens is achieved by clonal deletion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

T-cell vaccination may prevent or treat cancer and infectious diseases, but further progress is required to increase clinical efficacy. Step-by-step improvements of T-cell vaccination in phase I/II clinical studies combined with very detailed analysis of T-cell responses at the single cell level are the strategy of choice for the identification of the most promising vaccine candidates for testing in subsequent large-scale phase III clinical trials. Major aims are to fully identify the most efficient T-cells in anticancer therapy, to characterize their TCRs, and to pinpoint the mechanisms of T-cell recruitment and function in well-defined clinical situations. Here we discuss novel strategies for the assessment of human T-cell responses, revealing in part unprecedented insight into T-cell biology and novel structural principles that govern TCR-pMHC recognition. Together, the described approaches advance our knowledge of T-cell mediated-protection from human diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a novel steered molecular dynamics scheme to induce the dissociation of large protein-protein complexes. We apply this scheme to study the interaction of a T cell receptor (TCR) with a major histocompatibility complex (MHC) presenting a peptide (p). Two TCR-pMHC complexes are considered, which only differ by the mutation of a single amino acid on the peptide; one is a strong agonist that produces T cell activation in vivo, while the other is an antagonist. We investigate the interaction mechanism from a large number of unbinding trajectories by analyzing van der Waals and electrostatic interactions and by computing energy changes in proteins and solvent. In addition, dissociation potentials of mean force are calculated with the Jarzynski identity, using an averaging method developed for our steering scheme. We analyze the convergence of the Jarzynski exponential average, which is hampered by the large amount of dissipative work involved and the complexity of the system. The resulting dissociation free energies largely underestimate experimental values, but the simulations are able to clearly differentiate between wild-type and mutated TCR-pMHC and give insights into the dissociation mechanism.