74 resultados para non linear absorption
Resumo:
Elevated high-sensitivity C-reactive protein (hs-CRP) concentration is associated with an increased risk of cardiovascular disease but this association seems to be largely mediated via conventional cardiovascular risk factors. In particular, the association between hs-CRP and obesity has been extensively demonstrated and correlations are stronger in women than men. We used fractional polynomials-a method that allows flexible modeling of non linear relations-to investigate the dose/response mathematical relationship between hs-CRP and several indicators of adiposity in Caucasians (Switzerland) and Africans (Seychelles) surveyed in two population-based studies. This relationship was non-linear exhibiting a steeper slope for low levels of hs-CRP and a higher level in women. The observed sex difference in the relationship between hs-CRP and adiposity almost disappeared upon adjustment for leptin, suggesting that these sex differences might be partially mediated, by leptin. All these relationship were similar in Caucasians and Africans. This is the first report on a non-linear relation, stratified by gender, between hs-CRP and adiposity.
Resumo:
Besides CYP2B6, other polymorphic enzymes contribute to efavirenz (EFV) interindividual variability. This study was aimed at quantifying the impact of multiple alleles on EFV disposition. Plasma samples from 169 human immunodeficiency virus (HIV) patients characterized for CYP2B6, CYP2A6, and CYP3A4/5 allelic diversity were used to build up a population pharmacokinetic model using NONMEM (non-linear mixed effects modeling), the aim being to seek a general approach combining genetic and demographic covariates. Average clearance (CL) was 11.3 l/h with a 65% interindividual variability that was explained largely by CYP2B6 genetic variation (31%). CYP2A6 and CYP3A4 had a prominent influence on CL, mostly when CYP2B6 was impaired. Pharmacogenetics fully accounted for ethnicity, leaving body weight as the only significant demographic factor influencing CL. Square roots of the numbers of functional alleles best described the influence of each gene, without interaction. Functional genetic variations in both principal and accessory metabolic pathways demonstrate a joint impact on EFV disposition. Therefore, dosage adjustment in accordance with the type of polymorphism (CYP2B6, CYP2A6, or CYP3A4) is required in order to maintain EFV within the therapeutic target levels.
Resumo:
OBJECTIVE: The origins of behavioral and psychological symptoms (BPS) in Alzheimer's disease (AD) are still poorly understood. Focusing on individual personality structure, we explored the relationship between premorbid personality and its changes over 5 years, and BPS in patients at an early stage of AD. METHOD: A total of 54 patients at an early stage of AD according to ICD-10 and NINCDS-ADRDA criteria and 64 control subjects were included. Family members filled in the Neuropsychiatric Inventory Questionnaire to evaluate their proxies' current BPS and the NEO Personality Inventory Revised twice, the first time to evaluate the participants' current personality and the second time to assess personality traits as they were remembered to be 5 years earlier. RESULTS: Behavioral and psychological symptoms, in particular apathy, depression, anxiety, and agitation, are frequent occurrences in early stage AD. Premorbid personality differed between AD patients and normal control, but it was not predictive of BPS in patients with AD. Personality traits clearly change in the course of beginning AD, and this change seems to develop in parallel with BPS as early signs of AD. CONCLUSIONS: Premorbid personality was not associated with BPS in early stage of AD, although complex and non-linear relationships between the two are not excluded. However, both personality and behavioral changes occur early in the course of AD, and recognizing them as possible, early warning signs of neurodegeneration may prove to be a key factor for early detection and intervention. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
Inbreeding generally results in deleterious shifts in mean fitness. If the fitness response to increasing inbreeding coefficient is non-linear, this suggests a contribution of epistasis to inbreeding depression. In a cross-breeding experiment, Salathe & Ebert (2003. J. Evol. Biol. 16: 976-985) tested and found the presence of this non-linearity in Daphnia magna. They argue that epistatic interactions cause this non-linearity. We argue here that their experimental protocol does not allow disentangling the effect of synergistic epistasis from two alternative hypotheses, namely hybrid vigour and statistical non-independence of data.
Resumo:
The implicit projection algorithm of isotropic plasticity is extended to an objective anisotropic elastic perfectly plastic model. The recursion formula developed to project the trial stress on the yield surface, is applicable to any non linear elastic law and any plastic yield function.A curvilinear transverse isotropic model based on a quadratic elastic potential and on Hill's quadratic yield criterion is then developed and implemented in a computer program for bone mechanics perspectives. The paper concludes with a numerical study of a schematic bone-prosthesis system to illustrate the potential of the model.
Resumo:
OBJECTIVES: To determine the pharmacodynamic (PD) profile of serum total testosterone levels (TT) and luteinizing hormone (LH) in men with secondary hypogonadism following initial and chronic daily oral doses of enclomiphene citrate in comparison to transdermal testosterone. To determine the effects of daily oral doses of enclomiphene citrate (Androxal®) in comparison to transdermal testosterone on other hormones and markers in men with secondary hypogonadism. PATIENTS AND METHODS: This was a randomized, single blind, two-center phase II study to evaluate three different doses of enclomiphene citrate (6.25mg, 12.5mg and 25 mg Androxal®), versus AndroGel®, a transdermal testosterone, on 24-hour LH and TT in otherwise normal healthy men with secondary hypogonadism. Forty-eight men were enrolled in the trial (ITT Population), but 4 men had T levels >350 ng/dL at baseline. Forty-four men completed the study per protocol (PP population). All subjects enrolled in this trial had serum TT in the low range (<350 ng/dL) and had low to normal LH (<12 IU/L) on at least two occasions. TT and LH levels were assessed each hour for 24 hours to examine the effects at each of three treatment doses of enclomiphene versus a standard dose (5 grams) of transdermal testosterone (AndroGel). In the initial profile TT and LH were determined in a naïve population following a single initial oral or transdermal treatment (Day 1). This was contrasted to that seen after six weeks of continuous daily oral or transdermal treatment (Day 42). The pharmacokinetics of enclomiphene was performed in a select subpopulation. Serum samples were obtained over the course of the study to determine levels of various hormones and lipids. RESULTS: After six weeks of continuous use, the mean ± SD concentration of TT at Day 42 C0hrTT, was 604 ± 160 ng/dL for men taking the highest of dose of enclomiphene citrate (enclomiphene, 25 mg daily) and 500 ± 278 ng in those men treated with transdermal testosterone. These values were higher than Day 1 values but not different from each other (p = 0.23, T-test). All three doses of enclomiphene increased C0hrTT, CavgTT, CmaxTT, CminTT and CrangeTT. Transdermal testosterone also raised TT, albeit with more variability, and with suppressed LH levels. The patterns of TT over 24 hour period following six weeks of dosing could be fit to a non-linear function with morning elevations, mid-day troughs, and rising night-time levels. Enclomiphene and transdermal testosterone increased levels of TT within two weeks, but they had opposite effects on FSH and LH Treatment with enclomiphene did not significantly affect levels of TSH, ACTH, cortisol, lipids, or bone markers. Both transdermal testosterone and enclomiphene citrate decreased IGF-1 levels (p<0.05) but suppression was greater in the enclomiphene citrate groups. CONCLUSIONS: Enclomiphene citrate increased serum LH and TT; however, there was not a temporal association between the peak drug levels and the Cmax levels LH or TT. Enclomiphene citrate consistently increased serum TT into the normal range and increased LH and FSH above the normal range. The effects on LH and TT persisted for at least one week after stopping treatment.
Resumo:
Abstract (English)General backgroundMultisensory stimuli are easier to recognize, can improve learning and a processed faster compared to unisensory ones. As such, the ability an organism has to extract and synthesize relevant sensory inputs across multiple sensory modalities shapes his perception of and interaction with the environment. A major question in the scientific field is how the brain extracts and fuses relevant information to create a unified perceptual representation (but also how it segregates unrelated information). This fusion between the senses has been termed "multisensory integration", a notion that derives from seminal animal single-cell studies performed in the superior colliculus, a subcortical structure shown to create a multisensory output differing from the sum of its unisensory inputs. At the cortical level, integration of multisensory information is traditionally deferred to higher classical associative cortical regions within the frontal, temporal and parietal lobes, after extensive processing within the sensory-specific and segregated pathways. However, many anatomical, electrophysiological and neuroimaging findings now speak for multisensory convergence and interactions as a distributed process beginning much earlier than previously appreciated and within the initial stages of sensory processing.The work presented in this thesis is aimed at studying the neural basis and mechanisms of how the human brain combines sensory information between the senses of hearing and touch. Early latency non-linear auditory-somatosensory neural response interactions have been repeatedly observed in humans and non-human primates. Whether these early, low-level interactions are directly influencing behavioral outcomes remains an open question as they have been observed under diverse experimental circumstances such as anesthesia, passive stimulation, as well as speeded reaction time tasks. Under laboratory settings, it has been demonstrated that simple reaction times to auditory-somatosensory stimuli are facilitated over their unisensory counterparts both when delivered to the same spatial location or not, suggesting that audi- tory-somatosensory integration must occur in cerebral regions with large-scale spatial representations. However experiments that required the spatial processing of the stimuli have observed effects limited to spatially aligned conditions or varying depending on which body part was stimulated. Whether those divergences stem from task requirements and/or the need for spatial processing has not been firmly established.Hypotheses and experimental resultsIn a first study, we hypothesized that auditory-somatosensory early non-linear multisensory neural response interactions are relevant to behavior. Performing a median split according to reaction time of a subset of behavioral and electroencephalographic data, we found that the earliest non-linear multisensory interactions measured within the EEG signal (i.e. between 40-83ms post-stimulus onset) were specific to fast reaction times indicating a direct correlation of early neural response interactions and behavior.In a second study, we hypothesized that the relevance of spatial information for task performance has an impact on behavioral measures of auditory-somatosensory integration. Across two psychophysical experiments we show that facilitated detection occurs even when attending to spatial information, with no modulation according to spatial alignment of the stimuli. On the other hand, discrimination performance with probes, quantified using sensitivity (d'), is impaired following multisensory trials in general and significantly more so following misaligned multisensory trials.In a third study, we hypothesized that behavioral improvements might vary depending which body part is stimulated. Preliminary results suggest a possible dissociation between behavioral improvements andERPs. RTs to multisensory stimuli were modulated by space only in the case when somatosensory stimuli were delivered to the neck whereas multisensory ERPs were modulated by spatial alignment for both types of somatosensory stimuli.ConclusionThis thesis provides insight into the functional role played by early, low-level multisensory interac-tions. Combining psychophysics and electrical neuroimaging techniques we demonstrate the behavioral re-levance of early and low-level interactions in the normal human system. Moreover, we show that these early interactions are hermetic to top-down influences on spatial processing suggesting their occurrence within cerebral regions having access to large-scale spatial representations. We finally highlight specific interactions between auditory space and somatosensory stimulation on different body parts. Gaining an in-depth understanding of how multisensory integration normally operates is of central importance as it will ultimately permit us to consider how the impaired brain could benefit from rehabilitation with multisensory stimula-Abstract (French)Background théoriqueDes stimuli multisensoriels sont plus faciles à reconnaître, peuvent améliorer l'apprentissage et sont traités plus rapidement comparé à des stimuli unisensoriels. Ainsi, la capacité qu'un organisme possède à extraire et à synthétiser avec ses différentes modalités sensorielles des inputs sensoriels pertinents, façonne sa perception et son interaction avec l'environnement. Une question majeure dans le domaine scientifique est comment le cerveau parvient à extraire et à fusionner des stimuli pour créer une représentation percep- tuelle cohérente (mais aussi comment il isole les stimuli sans rapport). Cette fusion entre les sens est appelée "intégration multisensorielle", une notion qui provient de travaux effectués dans le colliculus supérieur chez l'animal, une structure sous-corticale possédant des neurones produisant une sortie multisensorielle différant de la somme des entrées unisensorielles. Traditionnellement, l'intégration d'informations multisen- sorielles au niveau cortical est considérée comme se produisant tardivement dans les aires associatives supérieures dans les lobes frontaux, temporaux et pariétaux, suite à un traitement extensif au sein de régions unisensorielles primaires. Cependant, plusieurs découvertes anatomiques, électrophysiologiques et de neuroimageries remettent en question ce postulat, suggérant l'existence d'une convergence et d'interactions multisensorielles précoces.Les travaux présentés dans cette thèse sont destinés à mieux comprendre les bases neuronales et les mécanismes impliqués dans la combinaison d'informations sensorielles entre les sens de l'audition et du toucher chez l'homme. Des interactions neuronales non-linéaires précoces audio-somatosensorielles ont été observées à maintes reprises chez l'homme et le singe dans des circonstances aussi variées que sous anes- thésie, avec stimulation passive, et lors de tâches nécessitant un comportement (une détection simple de stimuli, par exemple). Ainsi, le rôle fonctionnel joué par ces interactions à une étape du traitement de l'information si précoce demeure une question ouverte. Il a également été démontré que les temps de réaction en réponse à des stimuli audio-somatosensoriels sont facilités par rapport à leurs homologues unisensoriels indépendamment de leur position spatiale. Ce résultat suggère que l'intégration audio- somatosensorielle se produit dans des régions cérébrales possédant des représentations spatiales à large échelle. Cependant, des expériences qui ont exigé un traitement spatial des stimuli ont produits des effets limités à des conditions où les stimuli multisensoriels étaient, alignés dans l'espace ou encore comme pouvant varier selon la partie de corps stimulée. Il n'a pas été établi à ce jour si ces divergences pourraient être dues aux contraintes liées à la tâche et/ou à la nécessité d'un traitement de l'information spatiale.Hypothèse et résultats expérimentauxDans une première étude, nous avons émis l'hypothèse que les interactions audio- somatosensorielles précoces sont pertinentes pour le comportement. En effectuant un partage des temps de réaction par rapport à la médiane d'un sous-ensemble de données comportementales et électroencépha- lographiques, nous avons constaté que les interactions multisensorielles qui se produisent à des latences précoces (entre 40-83ms) sont spécifique aux temps de réaction rapides indiquant une corrélation directe entre ces interactions neuronales précoces et le comportement.Dans une deuxième étude, nous avons émis l'hypothèse que si l'information spatiale devient perti-nente pour la tâche, elle pourrait exercer une influence sur des mesures comportementales de l'intégration audio-somatosensorielles. Dans deux expériences psychophysiques, nous montrons que même si les participants prêtent attention à l'information spatiale, une facilitation de la détection se produit et ce toujours indépendamment de la configuration spatiale des stimuli. Cependant, la performance de discrimination, quantifiée à l'aide d'un index de sensibilité (d') est altérée suite aux essais multisensoriels en général et de manière plus significative pour les essais multisensoriels non-alignés dans l'espace.Dans une troisième étude, nous avons émis l'hypothèse que des améliorations comportementales pourraient différer selon la partie du corps qui est stimulée (la main vs. la nuque). Des résultats préliminaires suggèrent une dissociation possible entre une facilitation comportementale et les potentiels évoqués. Les temps de réactions étaient influencés par la configuration spatiale uniquement dans le cas ou les stimuli somatosensoriels étaient sur la nuque alors que les potentiels évoqués étaient modulés par l'alignement spatial pour les deux types de stimuli somatosensorielles.ConclusionCette thèse apporte des éléments nouveaux concernant le rôle fonctionnel joué par les interactions multisensorielles précoces de bas niveau. En combinant la psychophysique et la neuroimagerie électrique, nous démontrons la pertinence comportementale des ces interactions dans le système humain normal. Par ailleurs, nous montrons que ces interactions précoces sont hermétiques aux influences dites «top-down» sur le traitement spatial suggérant leur occurrence dans des régions cérébrales ayant accès à des représentations spatiales de grande échelle. Nous soulignons enfin des interactions spécifiques entre l'espace auditif et la stimulation somatosensorielle sur différentes parties du corps. Approfondir la connaissance concernant les bases neuronales et les mécanismes impliqués dans l'intégration multisensorielle dans le système normale est d'une importance centrale car elle permettra d'examiner et de mieux comprendre comment le cerveau déficient pourrait bénéficier d'une réhabilitation avec la stimulation multisensorielle.
Resumo:
Background: It is suggested that a low dose of valganciclovir can be equally effective than a standard dose for cytomegalovirus (CMV) prophylaxis after kidney transplantation. The aim of our study was to determine the ganciclovir exposure observed under a routine daily dosage of 450 mg valganciclovir in kidney transplant recipients with a wide range of renal function. Methods: In this prospective study, kidney transplant recipients with a GFR MDRD above 25 mL/min at risk for CMV (donor or recipient seropositive for CMV) received a dose of valganciclovir (450 mg daily) prophylaxis for 3 months. Ganciclovir levels at trough (Ctrough) and at peak (C3h) were measured monthly. Ganciclovir exposure (AUC0-24) was estimated using Bayesian non-linear mixed-effect modelling (NONMEM) and compared between 3 groups of patients according to their kidney function: GFRMDRD 26-39 mL/min (Group 1), GFRMDRD 40-59 mL/min (Group 2) and GFRMDRD 60-90 mL/min (Group 3). CMV DNAemia was assessed during and after prophylaxis using PCR. Results: Thirty-six patients received 450 mg daily of valganciclovir for 3 months. Median ganciclovir C3h was 3.9 mg/L (range: 1.3-7.1) and Ctrough was 0.4 mg/L (range 0.1-2.7). Median (range) AUC0-24 of ganciclovir was 59.3 mg.h/L (39.0-85.3) in Group 1 patients, 35.8 mg.h/L (24.9-55.8) in Group 2 patients and 29.6 mg.h/L (22.0- 43.2) in Group 3 patients (p<0.001). Anemia was more common in Group 1 patients compared to patients on the other groups (p=0.01). No differences in other adverse events according to ganciclovir exposure were observed. CMV DNAemia was not detected during prophylaxis. After discontinuing prophylaxis, CMV DNAemia was seen in 8/34 patients (23.5%) and 4/36 patients (11%) developed CMV disease. Conclusion: A routine dosage of valganciclovir achieved plasma levels of ganciclovir in patients with GFR>60 mL/min similar to those previously reported using oral ganciclovir. A daily dose of 450 mg valganciclovir appears to be acceptable for CMV prophylaxis in most kidney transplant recipients.
Resumo:
We present a novel spatiotemporal-adaptive Multiscale Finite Volume (MsFV) method, which is based on the natural idea that the global coarse-scale problem has longer characteristic time than the local fine-scale problems. As a consequence, the global problem can be solved with larger time steps than the local problems. In contrast to the pressure-transport splitting usually employed in the standard MsFV approach, we propose to start directly with a local-global splitting that allows to locally retain the original degree of coupling. This is crucial for highly non-linear systems or in the presence of physical instabilities. To obtain an accurate and efficient algorithm, we devise new adaptive criteria for global update that are based on changes of coarse-scale quantities rather than on fine-scale quantities, as it is routinely done before in the adaptive MsFV method. By means of a complexity analysis we show that the adaptive approach gives a noticeable speed-up with respect to the standard MsFV algorithm. In particular, it is efficient in case of large upscaling factors, which is important for multiphysics problems. Based on the observation that local time stepping acts as a smoother, we devise a self-correcting algorithm which incorporates the information from previous times to improve the quality of the multiscale approximation. We present results of multiphase flow simulations both for Darcy-scale and multiphysics (hybrid) problems, in which a local pore-scale description is combined with a global Darcy-like description. The novel spatiotemporal-adaptive multiscale method based on the local-global splitting is not limited to porous media flow problems, but it can be extended to any system described by a set of conservation equations.
Resumo:
Background: The imatinib trough plasma concentration (C(min)) correlates with clinical response in cancer patients. Therapeutic drug monitoring (TDM) of plasma C(min) is therefore suggested. In practice, however, blood sampling for TDM is often not performed at trough. The corresponding measurement is thus only remotely informative about C(min) exposure. Objectives: The objectives of this study were to improve the interpretation of randomly measured concentrations by using a Bayesian approach for the prediction of C(min), incorporating correlation between pharmacokinetic parameters, and to compare the predictive performance of this method with alternative approaches, by comparing predictions with actual measured trough levels, and with predictions obtained by a reference method, respectively. Methods: A Bayesian maximum a posteriori (MAP) estimation method accounting for correlation (MAP-ρ) between pharmacokinetic parameters was developed on the basis of a population pharmacokinetic model, which was validated on external data. Thirty-one paired random and trough levels, observed in gastrointestinal stromal tumour patients, were then used for the evaluation of the Bayesian MAP-ρ method: individual C(min) predictions, derived from single random observations, were compared with actual measured trough levels for assessment of predictive performance (accuracy and precision). The method was also compared with alternative approaches: classical Bayesian MAP estimation assuming uncorrelated pharmacokinetic parameters, linear extrapolation along the typical elimination constant of imatinib, and non-linear mixed-effects modelling (NONMEM) first-order conditional estimation (FOCE) with interaction. Predictions of all methods were finally compared with 'best-possible' predictions obtained by a reference method (NONMEM FOCE, using both random and trough observations for individual C(min) prediction). Results: The developed Bayesian MAP-ρ method accounting for correlation between pharmacokinetic parameters allowed non-biased prediction of imatinib C(min) with a precision of ±30.7%. This predictive performance was similar for the alternative methods that were applied. The range of relative prediction errors was, however, smallest for the Bayesian MAP-ρ method and largest for the linear extrapolation method. When compared with the reference method, predictive performance was comparable for all methods. The time interval between random and trough sampling did not influence the precision of Bayesian MAP-ρ predictions. Conclusion: Clinical interpretation of randomly measured imatinib plasma concentrations can be assisted by Bayesian TDM. Classical Bayesian MAP estimation can be applied even without consideration of the correlation between pharmacokinetic parameters. Individual C(min) predictions are expected to vary less through Bayesian TDM than linear extrapolation. Bayesian TDM could be developed in the future for other targeted anticancer drugs and for the prediction of other pharmacokinetic parameters that have been correlated with clinical outcomes.
Resumo:
Brain perfusion can be assessed by CT and MR. For CT, two major techniques are used. First, Xenon CT is an equilibrium technique based on a freely diffusible tracer. First pass of iodinated contrast injected intravenously is a second method, more widely available. Both methods are proven to be robust and quantitative, thanks to the linear relationship between contrast concentration and x-ray attenuation. For the CT methods, concern regarding x-ray doses delivered to the patients need to be addressed. MR is also able to assess brain perfusion using the first pass of gadolinium based contrast agent injected intravenously. This method has to be considered as a semi-quantitative because of the non linear relationship between contrast concentration and MR signal changes. Arterial spin labeling is another MR method assessing brain perfusion without injection of contrast. In such case, the blood flow in the carotids is magnetically labelled by an external radiofrequency pulse and observed during its first pass through the brain. Each of this various CT and MR techniques have advantages and limits that will be illustrated and summarized.Learning Objectives:1. To understand and compare the different techniques for brain perfusion imaging.2. To learn about the methods of acquisition and post-processing of brain perfusion by first pass of contrast agent for CT and MR.3. To learn about non contrast MR methods (arterial spin labelling).
Resumo:
Raman spectroscopy has become an attractive tool for the analysis of pharmaceutical solid dosage forms. In the present study it is used to ensure the identity of tablets. The two main applications of this method are release of final products in quality control and detection of counterfeits. Twenty-five product families of tablets have been included in the spectral library and a non-linear classification method, the Support Vector Machines (SVMs), has been employed. Two calibrations have been developed in cascade: the first one identifies the product family while the second one specifies the formulation. A product family comprises different formulations that have the same active pharmaceutical ingredient (API) but in a different amount. Once the tablets have been classified by the SVM model, API peaks detection and correlation are applied in order to have a specific method for the identification and allow in the future to discriminate counterfeits from genuine products. This calibration strategy enables the identification of 25 product families without error and in the absence of prior information about the sample. Raman spectroscopy coupled with chemometrics is therefore a fast and accurate tool for the identification of pharmaceutical tablets.
Resumo:
AIM: This study aims to investigate the clinical and demographic factors influencing gentamicin pharmacokinetics in a large cohort of unselected premature and term newborns and to evaluate optimal regimens in this population. METHODS: All gentamicin concentration data, along with clinical and demographic characteristics, were retrieved from medical charts in a Neonatal Intensive Care Unit over 5 years within the frame of a routine therapeutic drug monitoring programme. Data were described using non-linear mixed-effects regression analysis ( nonmem®). RESULTS: A total of 3039 gentamicin concentrations collected in 994 preterm and 455 term newborns were included in the analysis. A two compartment model best characterized gentamicin disposition. The average parameter estimates, for a median body weight of 2170 g, were clearance (CL) 0.089 l h(-1) (CV 28%), central volume of distribution (Vc ) 0.908 l (CV 18%), intercompartmental clearance (Q) 0.157 l h(-1) and peripheral volume of distribution (Vp ) 0.560 l. Body weight, gestational age and post-natal age positively influenced CL. Dopamine co-administration had a significant negative effect on CL, whereas the influence of indomethacin and furosemide was not significant. Both body weight and gestational age significantly influenced Vc . Model-based simulations confirmed that, compared with term neonates, preterm infants need higher doses, superior to 4 mg kg(-1) , at extended intervals to achieve adequate concentrations. CONCLUSIONS: This observational study conducted in a large cohort of newborns confirms the importance of body weight and gestational age for dosage adjustment. The model will serve to set up dosing recommendations and elaborate a Bayesian tool for dosage individualization based on concentration monitoring.
Resumo:
Manuel O, Pascual M, Perrottet N, Lamoth F, Venetz J-P, Decosterd LA, Buclin T, Meylan PR. Ganciclovir exposure under a 450 mg daily dosage of valganciclovir for cytomegalovirus prevention in kidney transplantation: a prospective study. Clin Transplant 2010: 24: 794-800. Abstract: This prospective study aimed at determining the ganciclovir exposure observed under a daily dosage of 450 mg valganciclovir routinely applied to kidney transplant recipients with a GFR above 25 mL/min at risk for cytomegalovirus (CMV) disease. Ganciclovir levels at trough (C(trough) ) and at peak (C(3 h) ) were measured monthly. Ganciclovir exposure (area under the curve [AUC(0-24) ]) was estimated using Bayesian non-linear mixed-effect modeling (NONMEM). Thirty-six patients received 450 mg of valganciclovir daily for three months. Median ganciclovir C(3 h) was 3.9 mg/L (range: 1.3-7.1), and C(trough) was 0.4 mg/L (range 0.1-2.7). Median AUC(0-24) of ganciclovir was 59.3 mg h/L (39.0-85.3) in patients with GFR(MDRD) 26-39 mL/min, 35.8 mg h/L (24.9-55.8) in patients with GFR(MDRD) 40-59 mL/min, and 29.6 mg h/L (22.0-43.2) in patients with GFR(MDRD) ≥ 60 mL/min. No major differences in adverse events according to ganciclovir exposure were observed. CMV viremia was not detected during prophylaxis. After discontinuing prophylaxis, CMV viremia was seen in 8/36 patients (22%), and 4/36 patients (11%) developed CMV disease. Ganciclovir exposure after administration of valganciclovir 450 mg daily in recipients with GFR ≥60 mL/min was comparable to those previously reported with oral ganciclovir. A routine daily dose of 450 mg valganciclovir appears to be acceptable for CMV prophylaxis in most kidney transplant recipients.
Resumo:
Self-potentials (SP) are sensitive to water fluxes and concentration gradients in both saturated and unsaturated geological media, but quantitative interpretations of SP field data may often be hindered by the superposition of different source contributions and time-varying electrode potentials. Self-potential mapping and close to two months of SP monitoring on a gravel bar were performed to investigate the origins of SP signals at a restored river section of the Thur River in northeastern Switzerland. The SP mapping and subsequent inversion of the data indicate that the SP sources are mainly located in the upper few meters in regions of soil cover rather than bare gravel. Wavelet analyses of the time-series indicate a strong, but non-linear influence of water table and water content variations, as well as rainfall intensity on the recorded SP signals. Modeling of the SP response with respect to an increase in the water table elevation and precipitation indicate that the distribution of soil properties in the vadose zone has a very strong influence. We conclude that the observed SP responses on the gravel bar are more complicated than previously proposed semi-empiric relationships between SP signals and hydraulic head or the thickness of the vadose zone. We suggest that future SP monitoring in restored river corridors should either focus on quantifying vadose zone processes by installing vertical profiles of closely spaced SP electrodes or by installing the electrodes within the river to avoid signals arising from vadose zone processes and time-varying electrochemical conditions in the vicinity of the electrodes.