67 resultados para nitrous acid, atmosphere, surface reaction, soil chemistry, HONO
Resumo:
In neurons, soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins drive the fusion of synaptic vesicles to the plasma membrane through the formation of a four-helix SNARE complex. Members of the Sec1/Munc18 protein family regulate membrane fusion through interactions with the syntaxin family of SNARE proteins. The neuronal protein Munc18a interacts with a closed conformation of the SNARE protein syntaxin1a (Syx1a) and with an assembled SNARE complex containing Syx1a in an open conformation. The N-peptide of Syx1a (amino acids 1-24) has been implicated in the transition of Munc18a-bound Syx1a to Munc18a-bound SNARE complex, but the underlying mechanism is not understood. Here we report the X-ray crystal structures of Munc18a bound to Syx1a with and without its native N-peptide (Syx1aΔN), along with small-angle X-ray scattering (SAXS) data for Munc18a bound to Syx1a, Syx1aΔN, and Syx1a L165A/E166A (LE), a mutation thought to render Syx1a in a constitutively open conformation. We show that all three complexes adopt the same global structure, in which Munc18a binds a closed conformation of Syx1a. We also identify a possible structural connection between the Syx1a N-peptide and SNARE domain that might be important for the transition of closed-to-open Syx1a in SNARE complex assembly. Although the role of the N-peptide in Munc18a-mediated SNARE complex assembly remains unclear, our results demonstrate that the N-peptide and LE mutation have no effect on the global conformation of the Munc18a-Syx1a complex.
Resumo:
Many new gene copies emerged by gene duplication in hominoids, but little is known with respect to their functional evolution. Glutamate dehydrogenase (GLUD) is an enzyme central to the glutamate and energy metabolism of the cell. In addition to the single, GLUD-encoding gene present in all mammals (GLUD1), humans and apes acquired a second GLUD gene (GLUD2) through retroduplication of GLUD1, which codes for an enzyme with unique, potentially brain-adapted properties. Here we show that whereas the GLUD1 parental protein localizes to mitochondria and the cytoplasm, GLUD2 is specifically targeted to mitochondria. Using evolutionary analysis and resurrected ancestral protein variants, we demonstrate that the enhanced mitochondrial targeting specificity of GLUD2 is due to a single positively selected glutamic acid-to-lysine substitution, which was fixed in the N-terminal mitochondrial targeting sequence (MTS) of GLUD2 soon after the duplication event in the hominoid ancestor approximately 18-25 million years ago. This MTS substitution arose in parallel with two crucial adaptive amino acid changes in the enzyme and likely contributed to the functional adaptation of GLUD2 to the glutamate metabolism of the hominoid brain and other tissues. We suggest that rapid, selectively driven subcellular adaptation, as exemplified by GLUD2, represents a common route underlying the emergence of new gene functions.
Resumo:
Drinking water is currently a scarce world resource, the preparation of which requires complex treatments that include clarification of suspended particles and disinfection. Seed extracts of Moringa oleifera Lam., a tropical tree, have been proposed as an environment-friendly alternative, due to their traditional use for the clarification of drinking water. However, the precise nature of the active components of the extract and whether they may be produced in recombinant form are unknown. Here we show that recombinant or synthetic forms of a cationic seed polypeptide mediate efficient sedimentation of suspended mineral particles and bacteria. Unexpectedly, the polypeptide was also found to possesses a bactericidal activity capable of disinfecting heavily contaminated water. Furthermore, the polypeptide has been shown to efficiently kill several pathogenic bacteria, including antibiotic-resistant isolates of Staphylococcus, Streptococcus, and Legionella species. Thus, this polypeptide displays the unprecedented feature of combining water purification and disinfectant properties. Identification of an active principle derived from the seed extracts points to a range of potential for drinking water treatment or skin and mucosal disinfection in clinical settings.
Resumo:
Warming experiments are increasingly relied on to estimate plant responses to global climate change. For experiments to provide meaningful predictions of future responses, they should reflect the empirical record of responses to temperature variability and recent warming, including advances in the timing of flowering and leafing. We compared phenology (the timing of recurring life history events) in observational studies and warming experiments spanning four continents and 1,634 plant species using a common measure of temperature sensitivity (change in days per degree Celsius). We show that warming experiments underpredict advances in the timing of flowering and leafing by 8.5-fold and 4.0-fold, respectively, compared with long-term observations. For species that were common to both study types, the experimental results did not match the observational data in sign or magnitude. The observational data also showed that species that flower earliest in the spring have the highest temperature sensitivities, but this trend was not reflected in the experimental data. These significant mismatches seem to be unrelated to the study length or to the degree of manipulated warming in experiments. The discrepancy between experiments and observations, however, could arise from complex interactions among multiple drivers in the observational data, or it could arise from remediable artefacts in the experiments that result in lower irradiance and drier soils, thus dampening the phenological responses to manipulated warming. Our results introduce uncertainty into ecosystem models that are informed solely by experiments and suggest that responses to climate change that are predicted using such models should be re-evaluated.
Resumo:
Cornea transplantation is one of the most performed graft procedures worldwide with an impressive success rate of 90%. However, for "high-risk" patients with particular ocular diseases in addition to the required surgery, the success rate is drastically reduced to 50%. In these cases, cyclosporin A (CsA) is frequently used to prevent the cornea rejection by a systemic treatment with possible systemic side effects for the patients. To overcome these problems, it is a challenge to prepare well-tolerated topical CsA formulations. Normally high amounts of oils or surfactants are needed for the solubilization of the very hydrophobic CsA. Furthermore, it is in general difficult to obtain ocular therapeutic drug levels with topical instillations due to the corneal barriers that efficiently protect the intraocular structures from foreign substances thus also from drugs. The aim of this study was to investigate in vivo the effects of a novel CsA topical aqueous formulation. This formulation was based on nanosized polymeric micelles as drug carriers. An established rat model for the prevention of cornea graft rejection after a keratoplasty procedure was used. After instillation of the novel formulation with fluorescent labeled micelles, confocal analysis of flat-mounted corneas clearly showed that the nanosized carriers were able to penetrate into all corneal layers. The efficacy of a 0.5% CsA micelle formulation was tested and compared to a physiological saline solution and to a systemic administration of CsA. In our studies, the topical CsA treatment was carried out for 14 days, and the three parameters (a) cornea transparency, (b) edema, and (c) neovascularization were evaluated by clinical observation and scoring. Compared to the control group, the treated group showed a significant higher cornea transparency and significant lower edema after 7 and 13 days of the surgery. At the end point of the study, the neovascularization was reduced by 50% in the CsA-micelle treated animals. The success rate of cornea graft transplantation was 73% in treated animals against 25% for the control group. This result was as good as observed for a systemic CsA treatment in the same animal model. This new formulation has the same efficacy like a systemic treatment but without the serious CsA systemic side effects. Ocular drug levels of transplanted and healthy rat eyes were dosed by UPLC/MS and showed a high CsA value in the cornea (11710 ± 7530 ng(CsA)/g(tissue) and 6470 ± 1730 ng(CsA)/g(tissue), respectively). In conclusion, the applied formulation has the capacity to overcome the ocular surface barriers, the micelles formed a drug reservoir in the cornea from, where a sustained release of CsA can take place. This novel formulation for topical application of CsA is clearly an effective and well-tolerated alternative to the systemic treatment for the prevention of corneal graft rejection.
Resumo:
We have defined structural features that are apparently important for the binding of four different, unrelated antigenic epitopes to the same major histocompatibility complex (MHC) class I molecule, H-2Kd. The four epitopes are recognized in the form of synthetic peptides by cytotoxic T lymphocytes of the appropriate specificity. By analysis of the relative potency of truncated peptides, we demonstrated that for each of the four epitopes, optimal antigenic activity was present in a peptide of 9 or 10 amino acid residues. A comparison of the relative competitor activity of the different-length peptides in a functional competition assay, as well as in a direct binding assay based on photoaffinity labeling of the Kd molecule, indicated that the enhanced potency of the peptides upon reduction in length was most likely due to a higher affinity of the shorter peptides for the Kd molecule. A remarkably simple motif that appears to be important for the specific binding of Kd-restricted peptides was identified by the analysis of peptides containing amino acid substitutions or deletions. The motif consists of two elements, a Tyr in the second position relative to the NH2 terminus and a hydrophobic residue with a large aliphatic side chain (Leu, Ile, or Val) at the COOH-terminal end of the optimal 9- or 10-mer peptides. We demonstrated that a simple peptide analogue (AYP6L) that incorporates the motif can effectively and specifically interact with the Kd molecule. Moreover, all of the additional Kd-restricted epitopes defined thus far in the literature contain the motif, and it may thus be useful for the prediction of new epitopes recognized by T cells in the context of this MHC class I molecule.
Resumo:
Ligands of the TNF (tumour necrosis factor) superfamily have pivotal roles in the organization and function of the immune system, and are implicated in the aetiology of several acquired and genetic diseases. TNF ligands share a common structural motif, the TNF homology domain (THD), which binds to cysteine-rich domains (CRDs) of TNF receptors. CRDs are composed of structural modules, whose variation in number and type confers heterogeneity upon the family. Protein folds reminiscent of the THD and CRD are also found in other protein families, raising the possibility that the mode of interaction between TNF and TNF receptors might be conserved in other contexts.
Resumo:
A new method for oxidative folding of synthetic polypeptides assembled by stepwise solid phase synthesis is introduced. Folding is obtained in excellent yields by reacting S-tert-butylthiolated polypeptides with a 100-fold molar excess of cysteine at 37 degrees C in a slightly alkaline buffer containing chaotropic salts, and in the presence of air-oxygen. This novel protocol has been applied to the folding of S-tert-butylthiolated human thymus and activation-regulated chemokine (hu-TARC) derivatives as well as to larger segments of Plasmodium falciparum and Plasmodium berghei circumsporozoite proteins. Folded P. falciparum polypeptides have been used as substrates of endoproteinase Glu-C (Glu-C) and endoproteinase Asp-N (Asp-N) in an attempt to identify their disulfide connectivities. Particular practical advantages of the present method are (i) easy purification and storage of the S-protected peptide derivatives, (ii) elimination of the risk of cysteine alkylation during the acidolytic cleavage deprotection and resin cleavage steps, (iii) possibility to precisely evaluate the extent of folding and disulfide bond formation by mass spectrometry, and (iv) facile recovery of the final folded product.
Resumo:
To study the structure of partially replicated plasmids, we cloned the Escherichia coli polar replication terminator TerE in its active orientation at different locations in the ColE1 vector pBR18. The resulting plasmids, pBR18-TerE@StyI and pBR18-TerE@EcoRI, were analyzed by neutral/neutral two-dimensional agarose gel electrophoresis and electron microscopy. Replication forks stop at the Ter-TUS complex, leading to the accumulation of specific replication intermediates with a mass 1.26 times the mass of non-replicating plasmids for pBR18-TerE@StyI and 1.57 times for pBR18-TerE@EcoRI. The number of knotted bubbles detected after digestion with ScaI and the number and electrophoretic mobility of undigested partially replicated topoisomers reflect the changes in plasmid topology that occur in DNA molecules replicated to different extents. Exposure to increasing concentrations of chloroquine or ethidium bromide revealed that partially replicated topoisomers (CCCRIs) do not sustain positive supercoiling as efficiently as their non-replicating counterparts. It was suggested that this occurs because in partially replicated plasmids a positive DeltaLk is absorbed by regression of the replication fork. Indeed, we showed by electron microscopy that, at least in the presence of chloroquine, some of the CCCRIs of pBR18-Ter@StyI formed Holliday-like junction structures characteristic of reversed forks. However, not all the positive supercoiling was absorbed by fork reversal in the presence of high concentrations of ethidium bromide.
Resumo:
v-E10, a caspase recruitment domain (CARD)-containing gene product of equine herpesvirus 2, is the viral homologue of the bcl-10 protein whose gene was found to be translocated in mucosa-associated lymphoid tissue (MALT) lymphomas. v-E10 efficiently activates the c-jun NH(2)-terminal kinase (JNK), p38 stress kinase, and the nuclear factor (NF)-kappaB transcriptional pathway and interacts with its cellular homologue, bcl-10, via a CARD-mediated interaction. Here we demonstrate that v-E10 contains a COOH-terminal geranylgeranylation consensus site which is responsible for its plasma membrane localization. Expression of v-E10 induces hyperphosphorylation and redistribution of bcl-10 from the cytoplasm to the plasma membrane, a process which is dependent on the intactness of the v-E10 CARD motif. Both membrane localization and a functional CARD motif are important for v-E10-mediated NF-kappaB induction, but not for JNK activation, which instead requires a functional v-E10 binding site for tumor necrosis factor receptor-associated factor (TRAF)6. Moreover, v-E10-induced NF-kappaB activation is inhibited by a dominant negative version of the bcl-10 binding protein TRAF1, suggesting that v-E10-induced membrane recruitment of cellular bcl-10 induces constitutive TRAF-mediated NF-kappaB activation.
Resumo:
The only currently available method to measure brain glycogen in vivo is 13C NMR spectroscopy. Incorporation of 13C-labeled glucose (Glc) is necessary to allow glycogen measurement, but might be affected by turnover changes. Our aim was to measure glycogen absolute concentration in the rat brain by eliminating label turnover as variable. The approach is based on establishing an increased, constant 13C isotopic enrichment (IE). 13C-Glc infusion is then performed at the IE of brain glycogen. As glycogen IE cannot be assessed in vivo, we validated that it can be inferred from that of N-acetyl-aspartate IE in vivo: After [1-13C]-Glc ingestion, glycogen IE was 2.2 +/- 0.1 fold that of N-acetyl-aspartate (n = 11, R(2) = 0.77). After subsequent Glc infusion, glycogen IE equaled brain Glc IE (n = 6, paired t-test, p = 0.37), implying isotopic steady-state achievement and complete turnover of the glycogen molecule. Glycogen concentration measured in vivo by 13C NMR (mean +/- SD: 5.8 +/- 0.7 micromol/g) was in excellent agreement with that in vitro (6.4 +/- 0.6 micromol/g, n = 5). When insulin was administered, the stability of glycogen concentration was analogous to previous biochemical measurements implying that glycogen turnover is activated by insulin. We conclude that the entire glycogen molecule is turned over and that insulin activates glycogen turnover.
Resumo:
Pyochelin (Pch) and enantio-pyochelin (EPch) are enantiomer siderophores that are produced by Pseudomonas aeruginosa and Pseudomonas fluorescens, respectively, under iron limitation. Pch promotes growth of P. aeruginosa when iron is scarce, and EPch carries out the same biological function in P. fluorescens. However, the two siderophores are unable to promote growth in the heterologous species, indicating that siderophore-mediated iron uptake is highly stereospecific. In the present work, using binding and iron uptake assays, we found that FptA, the Fe-Pch outer membrane transporter of P. aeruginosa, recognized (K(d) = 2.5 +/- 1.1 nm) and transported Fe-Pch but did not interact with Fe-EPch. Likewise, FetA, the Fe-EPch receptor of P. fluorescens, was specific for Fe-EPch (K(d) = 3.7 +/- 2.1 nm) but did not bind and transport Fe-Pch. Growth promotion experiments performed under iron-limiting conditions confirmed that FptA and FetA are highly specific for Pch and EPch, respectively. When fptA and fetA along with adjacent transport genes involved in siderophore uptake were swapped between the two bacterial species, P. aeruginosa became able to utilize Fe-EPch as an iron source, and P. fluorescens was able to grow with Fe-Pch. Docking experiments using the FptA structure and binding assays showed that the stereospecificity of Pch recognition by FptA was mostly due to the configuration of the siderophore chiral centers C4'' and C2'' and was only weakly dependent on the configuration of the C4' carbon atom. Together, these findings increase our understanding of the stereospecific interaction between Pch and its outer membrane receptor FptA.
Resumo:
Crushed seeds of the Moringa oleifera tree have been used traditionally as natural flocculants to clarify drinking water. We previously showed that one of the seed peptides mediates both the sedimentation of suspended particles such as bacterial cells and a direct bactericidal activity, raising the possibility that the two activities might be related. In this study, the conformational modeling of the peptide was coupled to a functional analysis of synthetic derivatives. This indicated that partly overlapping structural determinants mediate the sedimentation and antibacterial activities. Sedimentation requires a positively charged, glutamine-rich portion of the peptide that aggregates bacterial cells. The bactericidal activity was localized to a sequence prone to form a helix-loop-helix structural motif. Amino acid substitution showed that the bactericidal activity requires hydrophobic proline residues within the protruding loop. Vital dye staining indicated that treatment with peptides containing this motif results in bacterial membrane damage. Assembly of multiple copies of this structural motif into a branched peptide enhanced antibacterial activity, since low concentrations effectively kill bacteria such as Pseudomonas aeruginosa and Streptococcus pyogenes without displaying a toxic effect on human red blood cells. This study thus identifies a synthetic peptide with potent antibacterial activity against specific human pathogens. It also suggests partly distinct molecular mechanisms for each activity. Sedimentation may result from coupled flocculation and coagulation effects, while the bactericidal activity would require bacterial membrane destabilization by a hydrophobic loop.
Resumo:
Lentiviruses, the genus of retrovirus that includes HIV-1, rarely endogenize. Some lemurs uniquely possess an endogenous lentivirus called PSIV ("prosimian immunodeficiency virus"). Thus, lemurs provide the opportunity to study the activity of host defense factors, such as TRIM5α, in the setting of germ line invasion. We characterized the activities of TRIM5α proteins from two distant lemurs against exogenous retroviruses and a chimeric PSIV. TRIM5α from gray mouse lemur, which carries PSIV in its genome, exhibited the narrowest restriction activity. One allelic variant of gray mouse lemur TRIM5α restricted only N-tropic murine leukemia virus (N-MLV), while a second variant restricted N-MLV and, uniquely, B-tropic MLV (B-MLV); both variants poorly blocked PSIV. In contrast, TRIM5α from ring-tailed lemur, which does not contain PSIV in its genome, revealed one of the broadest antiviral activities reported to date against lentiviruses, including PSIV. Investigation into the antiviral specificity of ring-tailed lemur TRIM5α demonstrated a major contribution of a 32-amino-acid expansion in variable region 2 (v2) of the B30.2/SPRY domain to the breadth of restriction. Data on lemur TRIM5α and the prediction of ancestral simian sequences hint at an evolutionary scenario where antiretroviral specificity is prominently defined by the lineage-specific expansion of the variable loops of B30.2/SPRY.
Resumo:
The cysteine protease caspase-8 is an essential executioner of the death receptor (DR) apoptotic pathway. The physiological function of its homologue caspase-10 remains poorly understood, and the ability of caspase-10 to substitute for caspase-8 in the DR apoptotic pathway is still controversial. Here, we analysed the particular contribution of caspase-10 isoforms to DR-mediated apoptosis in neuroblastoma (NB) cells characterised by their resistance to DR signalling. Silencing of caspase-8 in tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)-sensitive NB cells resulted in complete resistance to TRAIL, which could be reverted by overexpression of caspase-10A or -10D. Overexpression experiments in various caspase-8-expressing tumour cells also demonstrated that caspase-10A and -10D isoforms strongly increased TRAIL and FasL sensitivity, whereas caspase-10B or -10G had no effect or were weakly anti-apoptotic. Further investigations revealed that the unique C-terminal end of caspase-10B was responsible for its degradation by the ubiquitin-proteasome pathway and for its lack of pro-apoptotic activity compared with caspase-10A and -10D. These data highlight in several tumour cell types, a differential pro- or anti-apoptotic role for the distinct caspase-10 isoforms in DR signalling, which may be relevant for fine tuning of apoptosis initiation.