35 resultados para nervous-system


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction: Drug prescription is difficult in ICUs as prescribers are many, drugs expensive and decisions complex. In our ICU, specialist clinicians (SC) are entitled to prescribe a list of specific drugs, negotiated with intensive care physicians (ICP). The objective of this investigation was to assess the 5-year evolution of quantity and costs of drug prescription in our adult ICU and identify the relative costs generated by ICP or SC. Methods: Quantities and costs of drugs delivered on a quarterly basis to the adult ICU of our hospital between 2004 and 2008 were extracted from the pharmacy database by ATC code, an international five-level classification system. Within each ATC first level, drugs with either high level of consumption, high costs or large variations in quantities and costs were singled out and split by type of prescriber, ICP or SC. Cost figures used were drug purchase prices by the hospital pharmacy. Results: Over the 5-year period, both quantities and costs of drugs increased, following a nonsteady, nonparallel pattern. Four ATC codes accounted for 80% of both quantities and costs, with ATC code B (blood and haematopoietic organs) amounting to 63% in quantities and 41% in costs, followed by ATC code J (systemic anti-infective, 20% of the costs), ATC code N (nervous system, 11% of the costs) and ATC code C (cardiovascular system, 8% of the costs). Prescription by SC amounted to 1% in drug quantities, but 19% in drug costs. The rate of increase in quantities and costs was seven times larger for ICP than for SC (Figure 1 overleaf ). Some peak values in costs and quantities were related to a very limited number of patients. Conclusions: A 5-year increase in quantities and costs of drug prescription in an ICU is a matter of concern. Rather unexpectedly, total costs and cost increases were generated mainly by ICP. A careful follow-up is necessary to try influencing this evolution through an institutional policy co-opted by all professional categories involved in the process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction: Coordination is a strategy chosen by the central nervous system to control the movements and maintain stability during gait. Coordinated multi-joint movements require a complex interaction between nervous outputs, biomechanical constraints, and pro-prioception. Quantitatively understanding and modeling gait coordination still remain a challenge. Surgeons lack a way to model and appreciate the coordination of patients before and after surgery of the lower limbs. Patients alter their gait patterns and their kinematic synergies when they walk faster or slower than normal speed to maintain their stability and minimize the energy cost of locomotion. The goal of this study was to provide a dynamical system approach to quantitatively describe human gait coordination and apply it to patients before and after total knee arthroplasty. Methods: A new method of quantitative analysis of interjoint coordination during gait was designed, providing a general model to capture the whole dynamics and showing the kinematic synergies at various walking speeds. The proposed model imposed a relationship among lower limb joint angles (hips and knees) to parameterize the dynamics of locomotion of each individual. An integration of different analysis tools such as Harmonic analysis, Principal Component Analysis, and Artificial Neural Network helped overcome high-dimensionality, temporal dependence, and non-linear relationships of the gait patterns. Ten patients were studied using an ambulatory gait device (Physilog®). Each participant was asked to perform two walking trials of 30m long at 3 different speeds and to complete an EQ-5D questionnaire, a WOMAC and Knee Society Score. Lower limbs rotations were measured by four miniature angular rate sensors mounted respectively, on each shank and thigh. The outcomes of the eight patients undergoing total knee arthroplasty, recorded pre-operatively and post-operatively at 6 weeks, 3 months, 6 months and 1 year were compared to 2 age-matched healthy subjects. Results: The new method provided coordination scores at various walking speeds, ranged between 0 and 10. It determined the overall coordination of the lower limbs as well as the contribution of each joint to the total coordination. The difference between the pre-operative and post-operative coordination values were correlated with the improvements of the subjective outcome scores. Although the study group was small, the results showed a new way to objectively quantify gait coordination of patients undergoing total knee arthroplasty, using only portable body-fixed sensors. Conclusion: A new method for objective gait coordination analysis has been developed with very encouraging results regarding the objective outcome of lower limb surgery.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A key aspect of glucose homeostasis is the constant monitoring of blood glucose concentrations by specific glucose sensing units. These sensors, via stimulation of hormone secretion and activation of the autonomic nervous system (ANS), regulate tissue glucose uptake, utilization or production. The best described glucose detection system is that of the pancreatic beta-cells which controls insulin secretion. Secretion of other hormones, in particular glucagon, and activation of the ANS, are regulated by glucose through sensing mechanisms which are much less well characterized. Here I review some of the studies we have performed over the recent years on a mouse model of impaired glucose sensing generated by inactivation of the gene for the glucose transporter GLUT2. This transporter catalyzes glucose uptake by pancreatic beta-cells, the first step in the signaling cascade leading to glucose-stimulated insulin secretion. Inactivation of its gene leads to a loss of glucose sensing and impaired insulin secretion. Transgenic reexpression of the transporter in GLUT2/beta-cells restores their normal secretory function and rescues the mice from early death. As GLUT2 is also expressed in other tissues, these mice were then studied for the presence of other physiological defects due to absence of this transporter. These studies led to the identification of extra-pancreatic, GLUT2-dependent, glucose sensors controlling glucagon secretion and glucose utilization by peripheral tissues, in part through a control of the autonomic nervous system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neural stem cells have been proposed as a new and promising treatment modality in various pathologies of the central nervous system, including malignant brain tumors. However, the underlying mechanism by which neural stem cells target tumor areas remains elusive. Monitoring of these cells is currently done by use of various modes of molecular imaging, such as optical imaging, magnetic resonance imaging and positron emission tomography, which is a novel technology for visualizing metabolism and signal transduction to gene expression. In this new context, the microenvironment of (malignant) brain tumors and the blood-brain barrier gains increased interest. The authors of this review give a unique overview of the current molecular-imaging techniques used in different therapeutic experimental brain tumor models in relation to neural stem cells. Such methods for molecular imaging of gene-engineered neural stem/progenitor cells are currently used to trace the location and temporal level of expression of therapeutic and endogenous genes in malignant brain tumors, closing the gap between in vitro and in vivo integrative biology of disease in neural stem cell transplantation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although the contribution of inflammatory processes in the etiology of late-onset Alzheimer's disease (AD) has been suspected for years, most studies were confined to the analysis of cell-mediated immunological reactions thought to represent an epiphenomenon of AD lesion development. Based on the traditional view of the "immunological privilege" of the brain, which excludes a direct access of human immunoglobulins (Ig) to the central nervous system under normal conditions, little attention has been paid to a possible role of humoral immunity in AD pathogenesis. In the first part of this review, we summarize evidences for a blood-brain barrier (BBB) dysfunction in this disorder and critically comment on earlier observations supporting the presence of anti-brain autoantibodies and immunoglobulins (Ig) in AD brains. Current concepts regarding the Ig turnover in the central nervous system and the mechanisms of glial and neuronal Fc receptors activation are also discussed. In the second part, we present new ex vivo and in vitro data suggesting that human immunoglobulins can interact with tau protein and alter both the dynamics and structural organization of microtubules. Subsequent experiments needed to test this new working hypothesis are addressed at the end of the review.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Cilengitide is a selective integrin inhibitor that is well tolerated and has demonstrated biologic activity in patients with recurrent malignant glioma. The primary objectives of this randomized phase 2 trial were to determine the safety and efficacy of cilengitide when combined with radiation and temozolomide for patients with newly diagnosed glioblastoma multiforme and to select a dose for comparative clinical testing. METHODS: In total, 112 patients were accrued. Eighteen patients received standard radiation and temozolomide with cilengitide in a safety run-in phase followed by a randomized phase 2 trial with 94 patients assigned to either a 500 mg dose group or 2000 mg dose group. The trial was designed to estimate overall survival benefit compared with a New Approaches to Brain Tumor Therapy (NABTT) Consortium internal historic control and data from the published European Organization for Research and Treatment of Cancer (EORTC) trial EORTC 26981. RESULTS: Cilengitide at all doses studied was well tolerated with radiation and temozolomide. The median survival was 19.7 months for all patients, 17.4 months for the patients in the 500 mg dose group, 20.8 months for patients in the 2000 mg dose group, 30 months for patients who had methylated O6-methylguanine-DNA methyltransferase (MGMT) status, and 17.4 months for patients who had unmethylated MGMT status. For patients aged ≤70 years, the median survival and survival at 24 months was superior to what was observed in the EORTC trial (20.7 months vs 14.6 months and 41% vs 27%, respectively; P = .008). CONCLUSIONS: Cilengitide was well tolerated when combined with standard chemoradiation and may improve survival for patients newly diagnosed with glioblastoma multiforme regardless of MGMT methylation status. The authors concluded that, from an efficacy and safety standpoint, future trials of this agent in this population should use the 2000 mg dose. Cancer 2012. © 2012 American Cancer Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oligodendroglia support axon survival and function through mechanisms independent of myelination, and their dysfunction leads to axon degeneration in several diseases. The cause of this degeneration has not been determined, but lack of energy metabolites such as glucose or lactate has been proposed. Lactate is transported exclusively by monocarboxylate transporters, and changes to these transporters alter lactate production and use. Here we show that the most abundant lactate transporter in the central nervous system, monocarboxylate transporter 1 (MCT1, also known as SLC16A1), is highly enriched within oligodendroglia and that disruption of this transporter produces axon damage and neuron loss in animal and cell culture models. In addition, this same transporter is reduced in patients with, and in mouse models of, amyotrophic lateral sclerosis, suggesting a role for oligodendroglial MCT1 in pathogenesis. The role of oligodendroglia in axon function and neuron survival has been elusive; this study defines a new fundamental mechanism by which oligodendroglia support neurons and axons.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is a life-long, potentially debilitating disease of the central nervous system (CNS). MS is considered to be an immune-mediated disease, and the presence of autoreactive peripheral lymphocytes in CNS compartments is believed to be critical in the process of demyelination and tissue damage in MS. Although MS is not currently a curable disease, several disease-modifying therapies (DMTs) are now available, or are in development. These DMTs are all thought to primarily suppress autoimmune activity within the CNS. Each therapy has its own mechanism of action (MoA) and, as a consequence, each has a different efficacy and safety profile. Neurologists can now select therapies on a more individual, patient-tailored basis, with the aim of maximizing potential for long-term efficacy without interruptions in treatment. The MoA and clinical profile of MS therapies are important considerations when making that choice or when switching therapies due to suboptimal disease response. This article therefore reviews the known and putative immunological MoAs alongside a summary of the clinical profile of therapies approved for relapsing forms of MS, and those in late-stage development, based on published data from pivotal randomized, controlled trials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Management of chronic pain is a real challenge, and current treatments focusing on blocking neurotransmission in the pain pathway have only resulted in limited success. Activation of glia cells has been widely implicated in neuroinflammation in the central nervous system, leading to neruodegeneration in many disease conditions such as Alzheimer's and multiple sclerosis. The inflammatory mediators released by activated glial cells, such as tumor necrosis factor-α and interleukin-1β can not only cause neurodegeneration in these disease conditions, but also cause abnormal pain by acting on spinal cord dorsal horn neurons in injury conditions. Pain can also be potentiated by growth factors such as BDNF and bFGF that are produced by glia to protect neurons. Thus, glia cells can powerfully control pain when they are activated to produce various pain mediators. We will review accumulating evidence supporting an important role of microglia cells in the spinal cord for pain control under injury conditions (e.g. nerve injury). We will also discuss possible signaling mechanisms in particular MAP kinase pathways that are critical for glia control of pain. Investigating signaling mechanisms in microglia may lead to more effective management of devastating chronic pain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

RESUME : La douleur neuropathique est le résultat d'une lésion ou d'un dysfonctionnement du système nerveux. Les symptômes qui suivent la douleur neuropathique sont sévères et leur traitement inefficace. Une meilleure approche thérapeutique peut être proposée en se basant sur les mécanismes pathologiques de la douleur neuropathique. Lors d'une lésion périphérique une douleur neuropathique peut se développer et affecter le territoire des nerfs lésés mais aussi les territoires adjacents des nerfs non-lésés. Une hyperexcitabilité des neurones apparaît au niveau des ganglions spinaux (DRG) et de la corne dorsale (DH) de la moelle épinière. Le but de ce travail consiste à mettre en évidence les modifications moléculaires associées aux nocicepteurs lésés et non-lésés au niveau des DRG et des laminae I et II de la corne dorsale, là où l'information nociceptive est intégrée. Pour étudier les changements moléculaires liés à la douleur neuropathique nous utilisons le modèle animal d'épargne du nerf sural (spared nerve injury model, SNI) une semaine après la lésion. Pour la sélection du tissu d'intérêt nous avons employé la technique de la microdissection au laser, afin de sélectionner une sous-population spécifique de cellules (notamment les nocicepteurs lésés ou non-lésés) mais également de prélever le tissu correspondant dans les laminae superficielles. Ce travail est couplé à l'analyse à large spectre du transcriptome par puce ADN (microarray). Par ailleurs, nous avons étudié les courants électriques et les propriétés biophysiques des canaux sodiques (Na,,ls) dans les neurones lésés et non-lésés des DRG. Aussi bien dans le système nerveux périphérique, entre les neurones lésés et non-lésés, qu'au niveau central avec les aires recevant les projections des nocicepteurs lésés ou non-lésés, l'analyse du transcriptome montre des différences de profil d'expression. En effet, nous avons constaté des changements transcriptionnels importants dans les nocicepteurs lésés (1561 gènes, > 1.5x et pairwise comparaison > 77%) ainsi que dans les laminae correspondantes (618 gènes), alors que ces modifications transcriptionelles sont mineures au niveau des nocicepteurs non-lésés (60 gènes), mais important dans leurs laminae de projection (459 gènes). Au niveau des nocicepteurs, en utilisant la classification par groupes fonctionnels (Gene Ontology), nous avons observé que plusieurs processus biologiques sont modifiés. Ainsi des fonctions telles que la traduction des signaux cellulaires, l'organisation du cytosquelette ainsi que les mécanismes de réponse au stress sont affectés. Par contre dans les neurones non-lésés seuls les processus biologiques liés au métabolisme et au développement sont modifiés. Au niveau de la corne dorsale de la moelle, nous avons observé des modifications importantes des processus immuno-inflammatoires dans l'aire affectée par les nerfs lésés et des changements associés à l'organisation et la transmission synaptique au niveau de l'aire des nerfs non-lésés. L'analyse approfondie des canaux sodiques a démontré plusieurs changements d'expression, principalement dans les neurones lésés. Les analyses fonctionnelles n'indiquent aucune différence entre les densités de courant tétrodotoxine-sensible (TTX-S) dans les neurones lésés et non-lésés même si les niveaux d'expression des ARNm des sous-unités TTX-S sont modifiés dans les neurones lésés. L'inactivation basale dépendante du voltage des canaux tétrodotoxine-insensible (TTX-R) est déplacée vers des potentiels positifs dans les cellules lésées et non-lésées. En revanche la vitesse de récupération des courants TTX-S et TTX-R après inactivation est accélérée dans les neurones lésés. Ces changements pourraient être à l'origine de l'altération de l'activité électrique des neurones sensoriels dans le contexte des douleurs neuropathiques. En résumé, ces résultats suggèrent l'existence de mécanismes différenciés affectant les neurones lésés et les neurones adjacents non-lésés lors de la mise en place la douleur neuropathique. De plus, les changements centraux au niveau de la moelle épinière qui surviennent après lésion sont probablement intégrés différemment selon la perception de signaux des neurones périphériques lésés ou non-lésés. En conclusion, ces modulations complexes et distinctes sont probablement des acteurs essentiels impliqués dans la genèse et la persistance des douleurs neuropathiques. ABSTRACT : Neuropathic pain (NP) results from damage or dysfunction of the peripheral or central nervous system. Symptoms associated with NP are severe and difficult to treat. Targeting NP mechanisms and their translation into symptoms may offer a better therapeutic approach.Hyperexcitability of the peripheral and central nervous system occurs in the dorsal root ganglia (DRG) and the dorsal horn (DH) of the spinal cord. We aimed to identify transcriptional variations in injured and in adjacent non-injured nociceptors as well as in corresponding laminae I and II of DH receiving their inputs.We investigated changes one week after the injury induced by the spared nerve injury model of NP. We employed the laser capture microdissection (LCM) for the procurement of specific cell-types (enrichment in nociceptors of injured/non-injured neurons) and laminae in combination with transcriptional analysis by microarray. In addition, we studied functionál properties and currents of sodium channels (Nav1s) in injured and neighboring non-injured DRG neurons.Microarray analysis at the periphery between injured and non-injured DRG neurons and centrally between the area of central projections from injured and non-injured neurons show significant and differential expression patterns. We reported changes in injured nociceptors (1561 genes, > 1.5 fold, >77% pairwise comparison) and in corresponding DH laminae (618 genes), while less modifications occurred in non-injured nociceptors (60 genes) and in corresponding DH laminae (459 genes). At the periphery, we observed by Gene Ontology the involvement of multiple biological processes in injured neurons such as signal transduction, cytoskeleton organization or stress responses. On contrast, functional overrepresentations in non-injured neurons were noted only in metabolic or developmentally related mechanisms. At the level of superficial laminae of the dorsal horn, we reported changes of immune and inflammatory processes in injured-related DH and changes associated with synaptic organization and transmission in DH corresponding to non-injured neurons. Further transcriptional analysis of Nav1s indicated several changes in injured neurons. Functional analyses of Nav1s have established no difference in tetrodotoxin-sensitive (TTX-S) current densities in both injured and non-injured neurons, despite changes in TTX-S Nav1s subunit mRNA levels. The tetrodotoxin-resistant (TTX-R) voltage dependence of steady state inactivation was shifted to more positive potentials in both injured and non-injured neurons, and the rate of recovery from inactivation of TTX-S and TTX-R currents was accelerated in injured neurons. These changes may lead to alterations in neuronal electrogenesis. Taken together, these findings suggest different mechanisms occurring in the injured neurons and the adjacent non-injured ones. Moreover, central changes after injury are probably driven in a different manner if they receive inputs from injured or non-injured neurons. Together, these distinct and complex modulations may contribute to NP.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Glioblastoma multiforme (GBM), a highly invasive and vascular cancer, responds poorly to conventional cytotoxic therapy. Integrins, widely expressed in GBM and tumor vasculature, mediate cell survival, migration and angiogenesis. Cilengitide is a potent alphavbeta3 and alphavbeta5 integrin inhibitor. OBJECTIVE: To summarize the preclinical and clinical experience with cilengitide for GBM. METHODS: Preclinical studies and clinical trials evaluating cilengitide for GBM were reviewed. RESULTS/CONCLUSIONS: Cilengitide is active and synergizes with external beam radiotherapy in preclinical GBM models. In clinical trials for recurrent GBM, single-agent cilengitide has antitumor benefits and minimal toxicity. Among newly diagnosed GBM patients, single-arm studies incorporating cilengitide into standard external beam radiotherapy/temozolomide have shown encouraging activity with no increased toxicity and have led to a planned randomized Phase III trial.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE: To determine the sensitivity of ultrasonography in screening for foetal malformations in the pregnant women of the Swiss Canton of Vaud. STUDY DESIGN: Retrospective study over a period of five years. METHOD: We focused our study on 512 major or minor clinically relevant malformations detectable by ultrasonography. We analysed the global sensitivity of the screening and compared the performance of the tertiary centre with that of practitioners working in private practice or regional hospitals. RESULTS: Among the 512 malformations, 181 (35%) involved the renal and urinary tract system, 137 (27%) the heart, 71 (14%) the central nervous system, 50 (10%) the digestive system, 42 (8%) the face and 31 (6%) the limbs. Global sensitivity was 54.5%. The lowest detection rate was observed for cardiac anomalies, with only 23% correct diagnoses. The tertiary centre achieved a 75% detection rate in its outpatient clinic and 83% in referred patients. Outside the referral centre, the diagnostic rate attained 47%. CONCLUSIONS: Routine foetal examination by ultrasonography in a low-risk population can detect foetal structural abnormalities. Apart from the diagnosis of cardiac abnormalities, the results in the Canton of Vaud are satisfactory and justify routine screening for malformations in a low-risk population. A prerequisite is continuing improvement in the skills of ultrasonographers through medical education.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this analysis was to evaluate mortality among a cohort of 24,865 capacitor-manufacturing workers exposed to polychlorinated biphenyls (PCBs) at plants in Indiana, Massachusetts, and New York and followed for mortality through 2008. Cumulative PCB exposure was estimated using plant-specific job-exposure matrices. External comparisons to US and state-specific populations used standardized mortality ratios, adjusted for gender, race, age and calendar year. Among long-term workers employed 3 months or longer, within-cohort comparisons used standardized rate ratios and multivariable Poisson regression modeling. Through 2008, more than one million person-years at risk and 8749 deaths were accrued. Among long-term employees, all-cause and all-cancer mortality were not elevated; of the a priori outcomes assessed only melanoma mortality was elevated. Mortality was elevated for some outcomes of a priori interest among subgroups of long-term workers: all cancer, intestinal cancer and amyotrophic lateral sclerosis (women); melanoma (men); melanoma and brain and nervous system cancer (Indiana plant); and melanoma and multiple myeloma (New York plant). Standardized rates of stomach and uterine cancer and multiple myeloma mortality increased with estimated cumulative PCB exposure. Poisson regression modeling showed significant associations with estimated cumulative PCB exposure for prostate and stomach cancer mortality. For other outcomes of a priori interest--rectal, liver, ovarian, breast, and thyroid cancer, non-Hodgkin lymphoma, Alzheimer disease, and Parkinson disease--neither elevated mortality nor positive associations with PCB exposure were observed. Associations between estimated cumulative PCB exposure and stomach, uterine, and prostate cancer and myeloma mortality confirmed our previous positive findings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, we assessed whether the white-coat effect (difference between office and daytime blood pressure (BP)) is associated with nondipping (absence of BP decrease at night). Data were available in 371 individuals of African descent from 74 families selected from a population-based hypertension register in the Seychelles Islands and in 295 Caucasian individuals randomly selected from a population-based study in Switzerland. We used standard multiple linear regression in the Swiss data and generalized estimating equations to account for familial correlations in the Seychelles data. The prevalence of systolic and diastolic nondipping (<10% nocturnal BP decrease) and white-coat hypertension (WCH) was respectively 51, 46, and 4% in blacks and 33, 37, and 7% in whites. When white coat effect and nocturnal dipping were taken as continuous variables (mm Hg), systolic (SBP) and diastolic BP (DBP) dipping were associated inversely and independently with white-coat effect (P < 0.05) in both populations. Analogously, the difference between office and daytime heart rate was inversely associated with the difference between daytime and night-time heart rate in the two populations. These results did not change after adjustment for potential confounders. The white-coat effect is associated with BP nondipping. The similar associations between office-daytime values and daytime-night-time values for both BP and heart rate suggest that the sympathetic nervous system might play a role. Our findings also further stress the interest, for clinicians, of assessing the presence of a white-coat effect as a means to further identify patients at increased cardiovascular risk and guide treatment accordingly.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The monocarboxylate transporter MCT4 is a high capacity carrier important for lactate release from highly glycolytic cells. In the central nervous system, MCT4 is predominantly expressed by astrocytes. Surprisingly, MCT4 expression in cultured astrocytes is low, suggesting that a physiological characteristic, not met in culture conditions, is necessary. Here we demonstrate that reducing oxygen concentration from 21% to either 1 or 0% restored in a concentration-dependent manner the expression of MCT4 at the mRNA and protein levels in cultured astrocytes. This effect was specific for MCT4 since the expression of MCT1, the other astrocytic monocarboxylate transporter present in vitro, was not altered in such conditions. MCT4 expression was shown to be controlled by the transcription factor hypoxia-inducible factor-1α (HIF-1α) since under low oxygen levels, transfecting astrocyte cultures with a siRNA targeting HIF-1α largely prevented MCT4 induction. Moreover, the prolyl hydroxylase inhibitor dimethyloxalylglycine (DMOG) induced MCT4 expression in astrocytes cultured in presence of 21% oxygen. In parallel, glycolytic activity was enhanced by exposure to 1% oxygen as demonstrated by the increased lactate release, an effect dependent on MCT4 expression. Finally, MCT4 expression was found to be necessary for astrocyte survival when exposed for a prolonged period to 1% oxygen. These data suggest that a major determinant of astrocyte MCT4 expression in vivo is likely the oxygen tension. This could be relevant in areas of high neuronal activity and oxygen consumption, favouring astrocytic lactate supply to neurons. Moreover, it could also play an important role for neuronal recovery after an ischemic episode.