27 resultados para nanometric coatings


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultraviolet (UV) radiation potentially damages the skin, the immune system, and structures of the eye. A useful UV sun protection for the skin has been established. Since a remarkable body of evidence shows an association between UV radiation and damage to structures of the eye, eye protection is important, but a reliable and practical tool to assess and compare the UV-protective properties of lenses has been lacking. Among the general lay public, misconceptions on eye-sun protection have been identified. For example, sun protection is mainly ascribed to sunglasses, but less so to clear lenses. Skin malignancies in the periorbital region are frequent, but usual topical skin protection does not include the lids. Recent research utilized exact dosimetry and demonstrated relevant differences in UV burden to the eye and skin at a given ambient irradiation. Chronic UV effects on the cornea and lens are cumulative, so effective UV protection of the eyes is important for all age groups and should be used systematically. Protection of children's eyes is especially important, because UV transmittance is higher at a very young age, allowing higher levels of UV radiation to reach the crystalline lens and even the retina. Sunglasses as well as clear lenses (plano and prescription) effectively reduce transmittance of UV radiation. However, an important share of the UV burden to the eye is explained by back reflection of radiation from lenses to the eye. UV radiation incident from an angle of 135°-150° behind a lens wearer is reflected from the back side of lenses. The usual antireflective coatings considerably increase reflection of UV radiation. To provide reliable labeling of the protective potential of lenses, an eye-sun protection factor (E-SPF®) has been developed. It integrates UV transmission as well as UV reflectance of lenses. The E-SPF® compares well with established skin-sun protection factors and provides clear messages to eye health care providers and to lay consumers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanotechnology has been heralded as a "revolution" in science, for two reasons: first, because of its revolutionary view of the way in which chemicals and elements, such as gold and silver, behave, compared to traditional scientific understanding of their properties. Second, the impact of these new discoveries, as applied to commerce, can transform the daily life of consumer products ranging from sun tan lotions and cosmetics, food packaging and paints and coatings for cars, housing and fabrics, medicine and thousands of industrial processes.9 Beneficial consumer use of nanotechnologies, already in the stream of commerce, improves coatings on inks and paints in everything from food packaging to cars. Additionally, "Nanomedicine" offers the promise of diagnosis and treatment at the molecular level in order to detect and treat presymptomatic disease,10 or to rebuild neurons in Alzheimer's and Parkinson's disease. There is a possibility that severe complications such as stroke or heart attack may be avoided by means of prophylactic treatment of people at risk, and bone regeneration may keep many people active who never expected rehabilitation. Miniaturisation of diagnostic equipment can also reduce the amount of sampling materials required for testing and medical surveillance. Miraculous developments, that sound like science fiction to those people who eagerly anticipate these medical products, combined with the emerging commercial impact of nanotechnology applications to consumer products will reshape civil society - permanently. Thus, everyone within the jurisdiction of the Council of Europe is an end-user of nanotechnology, even without realising that nanotechnology has touched daily life.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Red blood cell (RBC) membrane fluctuations provide important insights into cell states. We present a spatial analysis of red blood cell membrane fluctuations by using digital holographic microscopy (DHM). This interferometric and dye-free technique, possessing nanometric axial and microsecond temporal sensitivities enables to measure cell membrane fluctuations (CMF) on the whole cell surface. DHM acquisition is combined with a model which allows extracting the membrane fluctuation amplitude, while taking into account cell membrane topology. Uneven distribution of CMF amplitudes over the RBC surface is observed, showing maximal values in a ring corresponding to the highest points on the RBC torus as well as in some scattered areas in the inner region of the RBC. CMF amplitudes of 35.9+/-8.9 nm and 4.7+/-0.5 nm (averaged over the cell surface) were determined for normal and ethanol-fixed RBCs, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By expressing an array of pattern recognition receptors (PRRs), fibroblasts play an important role in stimulating and modulating the response of the innate immune system. The TLR3 ligand polyriboinosinic acid-polyribocytidylic acid, poly(I:C), a mimic of viral dsRNA, is a vaccine adjuvant candidate to activate professional antigen presenting cells (APCs). However, owing to its ligation with extracellular TLR3 on fibroblasts, subcutaneously administered poly(I:C) bears danger towards autoimmunity. It is thus in the interest of its clinical safety to deliver poly(I:C) in such a way that its activation of professional APCs is as efficacious as possible, whereas its interference with non-immune cells such as fibroblasts is controlled or even avoided. Complementary to our previous work with monocyte-derived dendritic cells (MoDCs), here we sought to control the delivery of poly(I:C) surface-assembled on microspheres to human foreskin fibroblasts (HFFs). Negatively charged polystyrene (PS) microspheres were equipped with a poly(ethylene glycol) (PEG) corona through electrostatically driven coatings with a series of polycationic poly(L-lysine)-graft-poly(ethylene glycol) copolymers, PLL-g-PEG, of varying grafting ratios g from 2.2 up to 22.7. Stable surface assembly of poly(I:C) was achieved by incubation of polymer-coated microspheres with aqueous poly(I:C) solutions. Notably, recognition of both surface-assembled and free poly(I:C) by extracellular TLR3 on HFFs halted their phagocytic activity. Ligation of surface-assembled poly(I:C) with extracellular TLR3 on HFFs could be controlled by tuning the grafting ratio g and thus the chain density of the PEG corona. When assembled on PLL-5.7-PEG-coated microspheres, poly(I:C) was blocked from triggering class I MHC molecule expression on HFFs. Secretion of interleukin (IL)-6 by HFFs after exposure to surface-assembled poly(I:C) was distinctly lower as compared to free poly(I:C). Overall, surface assembly of poly(I:C) may have potential to contribute to the clinical safety of this vaccine adjuvant candidate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The atomic force microscope is a convenient tool to probe living samples at the nanometric scale. Among its numerous capabilities, the instrument can be operated as a nano-indenter to gather information about the mechanical properties of the sample. In this operating mode, the deformation of the cantilever is displayed as a function of the indentation depth of the tip into the sample. Fitting this curve with different theoretical models permits us to estimate the Young's modulus of the sample at the indentation spot. We describe what to our knowledge is a new technique to process these curves to distinguish structures of different stiffness buried into the bulk of the sample. The working principle of this new imaging technique has been verified by finite element models and successfully applied to living cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanotechnology has been heralded as a "revolution" in science, for two reasons: first, because of its revolutionary view of the way in which chemicals and elements, such as gold and silver, behave, compared to traditional scientific understanding of their properties. Second, the impact of these new discoveries, as applied to commerce, can transform the daily life of consumer products ranging from sun tan lotions and cosmetics, food packaging and paints and coatings for cars, housing and fabrics, medicine and thousands of industrial processes.9 Beneficial consumer use of nanotechnologies, already in the stream of commerce, improves coatings on inks and paints in everything from food packaging to cars. Additionally, "Nanomedicine" offers the promise of diagnosis and treatment at the molecular level in order to detect and treat presymptomatic disease,10 or to rebuild neurons in Alzheimer's and Parkinson's disease. There is a possibility that severe complications such as stroke or heart attack may be avoided by means of prophylactic treatment of people at risk, and bone regeneration may keep many people active who never expected rehabilitation. Miniaturisation of diagnostic equipment can also reduce the amount of sampling materials required for testing and medical surveillance. Miraculous developments, that sound like science fiction to those people who eagerly anticipate these medical products, combined with the emerging commercial impact of nanotechnology applications to consumer products will reshape civil society - permanently. Thus, everyone within the jurisdiction of the Council of Europe is an end-user of nanotechnology, even without realising that nanotechnology has touched daily life.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Given the multiplicity of nanoparticles (NPs), there is a requirement to develop screening strategies to evaluate their toxicity. Within the EU-funded FP7 NanoTEST project, a panel of medically relevant NPs has been used to develop alternative testing strategies of NPs used in medical diagnostics. As conventional toxicity tests cannot necessarily be directly applied to NPs in the same manner as for soluble chemicals and drugs, we determined the extent of interference of NPs with each assay process and components. In this study, we fully characterized the panel of NP suspensions used in this project (poly(lactic-co-glycolic acid)-polyethylene oxide [PLGA-PEO], TiO2, SiO2, and uncoated and oleic-acid coated Fe3O4) and showed that many NP characteristics (composition, size, coatings, and agglomeration) interfere with a range of in vitro cytotoxicity assays (WST-1, MTT, lactate dehydrogenase, neutral red, propidium iodide, (3)H-thymidine incorporation, and cell counting), pro-inflammatory response evaluation (ELISA for GM-CSF, IL-6, and IL-8), and oxidative stress detection (monoBromoBimane, dichlorofluorescein, and NO assays). Interferences were assay specific as well as NP specific. We propose how to integrate and avoid interference with testing systems as a first step of a screening strategy for biomedical NPs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In traffic accidents involving motorcycles, paint traces can be transferred from the rider's helmet or smeared onto its surface. These traces are usually in the form of chips or smears and are frequently collected for comparison purposes. This research investigates the physical and chemical characteristics of the coatings found on motorcycles helmets. An evaluation of the similarities between helmet and automotive coating systems was also performed.Twenty-seven helmet coatings from 15 different brands and 22 models were considered. One sample per helmet was collected and observed using optical microscopy. FTIR spectroscopy was then used and seven replicate measurements per layer were carried out to study the variability of each coating system (intravariability). Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) were also performed on the infrared spectra of the clearcoats and basecoats of the data set. The most common systems were composed of two or three layers, consistently involving a clearcoat and basecoat. The coating systems of helmets with composite shells systematically contained a minimum of three layers. FTIR spectroscopy results showed that acrylic urethane and alkyd urethane were the most frequent binders used for clearcoats and basecoats. A high proportion of the coatings were differentiated (more than 95%) based on microscopic examinations. The chemical and physical characteristics of the coatings allowed the differentiation of all but one pair of helmets of the same brand, model and color. Chemometrics (PCA and HCA) corroborated classification based on visual comparisons of the spectra and allowed the study of the whole data set at once (i.e., all spectra of the same layer). Thus, the intravariability of each helmet and its proximity to the others (intervariability) could be more readily assessed. It was also possible to determine the most discriminative chemical variables based on the study of the PCA loadings. Chemometrics could therefore be used as a complementary decision-making tool when many spectra and replicates have to be taken into account. Similarities between automotive and helmet coating systems were highlighted, in particular with regard to automotive coating systems on plastic substrates (microscopy and FTIR). However, the primer layer of helmet coatings was shown to differ from the automotive primer. If the paint trace contains this layer, the risk of misclassification (i.e., helmet versus vehicle) is reduced. Nevertheless, a paint examiner should pay close attention to these similarities when analyzing paint traces, especially regarding smears or paint chips presenting an incomplete layer system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantitative phase microscopy (QPM) has recently emerged as a new powerful quantitative imaging technique well suited to noninvasively explore a transparent specimen with a nanometric axial sensitivity. In this review, we expose the recent developments of quantitative phase-digital holographic microscopy (QP-DHM). Quantitative phase-digital holographic microscopy (QP-DHM) represents an important and efficient quantitative phase method to explore cell structure and dynamics. In a second part, the most relevant QPM applications in the field of cell biology are summarized. A particular emphasis is placed on the original biological information, which can be derived from the quantitative phase signal. In a third part, recent applications obtained, with QP-DHM in the field of cellular neuroscience, namely the possibility to optically resolve neuronal network activity and spine dynamics, are presented. Furthermore, potential applications of QPM related to psychiatry through the identification of new and original cell biomarkers that, when combined with a range of other biomarkers, could significantly contribute to the determination of high risk developmental trajectories for psychiatric disorders, are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Recently, it has been suggested that the type of stent used in primary percutaneous coronary interventions (pPCI) might impact upon the outcomes of patients with acute myocardial infarction (AMI). Indeed, drug-eluting stents (DES) reduce neointimal hyperplasia compared to bare-metal stents (BMS). Moreover, the later generation DES, due to its biocompatible polymer coatings and stent design, allows for greater deliverability, improved endothelial healing and therefore less restenosis and thrombus generation. However, data on the safety and performance of DES in large cohorts of AMI is still limited. AIM: To compare the early outcome of DES vs. BMS in AMI patients. METHODS: This was a prospective, multicentre analysis containing patients from 64 hospitals in Switzerland with AMI undergoing pPCI between 2005 and 2013. The primary endpoint was in-hospital all-cause death, whereas the secondary endpoint included a composite measure of major adverse cardiac and cerebrovascular events (MACCE) of death, reinfarction, and cerebrovascular event. RESULTS: Of 20,464 patients with a primary diagnosis of AMI and enrolled to the AMIS Plus registry, 15,026 were referred for pPCI and 13,442 received stent implantation. 10,094 patients were implanted with DES and 2,260 with BMS. The overall in-hospital mortality was significantly lower in patients with DES compared to those with BMS implantation (2.6% vs. 7.1%,p < 0.001). The overall in-hospital MACCE after DES was similarly lower compared to BMS (3.5% vs. 7.6%, p < 0.001). After adjusting for all confounding covariables, DES remained an independent predictor for lower in-hospital mortality (OR 0.51,95% CI 0.40-0.67, p < 0.001). Since groups differed as regards to baseline characteristics and pharmacological treatment, we performed a propensity score matching (PSM) to limit potential biases. Even after the PSM, DES implantation remained independently associated with a reduced risk of in-hospital mortality (adjusted OR 0.54, 95% CI 0.39-0.76, p < 0.001). CONCLUSIONS: In unselected patients from a nationwide, real-world cohort, we found DES, compared to BMS, was associated with lower in-hospital mortality and MACCE. The identification of optimal treatment strategies of patients with AMI needs further randomised evaluation; however, our findings suggest a potential benefit with DES.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Different types of aerosolization and deagglomeration testing systems exist for studying the properties of nanomaterial powders and their aerosols. However, results are dependent on the specific methods used. In order to have well-characterized aerosols, we require a better understanding of how system parameters and testing conditions influence the properties of the aerosols generated. In the present study, four experimental setups delivering different aerosolization energies were used to test the resultant aerosols of two distinct nanomaterials (hydrophobic and hydrophilic TiO2). The reproducibility of results within each system was good. However, the number concentrations and size distributions of the aerosols created varied across the four systems; for number concentrations, e.g., from 10(3) to 10(6) #/cm(3). Moreover, distinct differences were also observed between the two materials with different surface coatings. The article discusses how system characteristics and other pertinent conditions modify the test results. We propose using air velocity as a suitable proxy for estimating energy input levels in aerosolization systems. The information derived from this work will be especially useful for establishing standard operating procedures for testing nanopowders, as well as for estimating their release rates under different energy input conditions, which is relevant for occupational exposure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RGD peptide sequences are known to regulate cellular activities by interacting with α5β1, αvβ5 and αvβ3 integrin, which contributes to the wound healing process. In this study, RGDC peptide was immobilized onto chitosan derivative 1,6-diaminohexane-O-carboxymethyl-N,N,N-trimethyl chitosan (DAH-CMTMC) to display RGDC-promoting adhesion for enhanced wound healing. The efficiency of N-methylation, O-carboxymethylation and spacer grafting was quantitatively and qualitatively analyzed by (1)H NMR and FTIR, yielding 0.38 degree of substitution for N-methylation and >0.85 for O-carboxymethylation. The glass transition temperatures for chitosan derivatives were also studied. Peptide immobilization was achieved through sulfhydryl groups using sulfosuccinimidyl (4-iodoacetyl)amino-benzoate (sulfo-SIAB method). RGDC immobilized peptide onto DAH-CMTMC was found to be about 15.3μg/mg of chitosan derivative by amino acid analysis (AAA). The significant increase of human dermal fibroblast (HDF) viability in vitro over 7 days suggests that RGDC-functionalized chitosan may lead to enhanced wound healing (viability >140%). Moreover, bio-adhesion and proliferation assays confirmed that coatings of RGDC-functionalized chitosan derivatives exhibit in vitro wound healing properties by enhancing fibroblast proliferation and adhesion. These results showed that RGDC peptide-functionalized chitosan provides an optimal environment for fibroblast adhesion and proliferation.