214 resultados para mind change complexity
Resumo:
Neuroblastoma (NB) is a neural crest-derived childhood tumor characterized by a remarkable phenotypic diversity, ranging from spontaneous regression to fatal metastatic disease. Although the cancer stem cell (CSC) model provides a trail to characterize the cells responsible for tumor onset, the NB tumor-initiating cell (TIC) has not been identified. In this study, the relevance of the CSC model in NB was investigated by taking advantage of typical functional stem cell characteristics. A predictive association was established between self-renewal, as assessed by serial sphere formation, and clinical aggressiveness in primary tumors. Moreover, cell subsets gradually selected during serial sphere culture harbored increased in vivo tumorigenicity, only highlighted in an orthotopic microenvironment. A microarray time course analysis of serial spheres passages from metastatic cells allowed us to specifically "profile" the NB stem cell-like phenotype and to identify CD133, ABC transporter, and WNT and NOTCH genes as spheres markers. On the basis of combined sphere markers expression, at least two distinct tumorigenic cell subpopulations were identified, also shown to preexist in primary NB. However, sphere markers-mediated cell sorting of parental tumor failed to recapitulate the TIC phenotype in the orthotopic model, highlighting the complexity of the CSC model. Our data support the NB stem-like cells as a dynamic and heterogeneous cell population strongly dependent on microenvironmental signals and add novel candidate genes as potential therapeutic targets in the control of high-risk NB.
Resumo:
INTRODUCTION: Assessing motivation for change is deemed an important step in the treatment process that allows further refinement of the intervention in motivational interviewing (MI) and brief MI (BMI) adaptations. During MI (and BMI) sessions, motivation for change is expressed by the client as "change talk", i.e. all statements inclined toward or away from change. We tested the predictive validity of the Change Questionnaire, a 12-item instrument assessing motivation to change, on hazardous tobacco and alcohol use. METHODS: As part of the baseline measurements for a randomized controlled trial on multi-substance BMI at the Lausanne recruitment center (army conscription is mandatory in Switzerland for males at age 20, and thus provides a unique opportunity to address a non-clinical and largely representative sample of young men), 213 participants completed the questionnaire on tobacco and 95 on alcohol and were followed-up six months later. The overall Change Questionnaire score and its six subscales (Desire, Ability, Reasons, Need, Commitment, and Taking steps) were used as predictors of hazardous tobacco use (defined as daily smoking) and hazardous alcohol use (defined as more than one occasion with six standard drinks or more per month, and/or more than 21 standard drinks per week) in bivariate logistic regression models at follow-up. RESULTS: Higher overall Change scores were significant predictors of decreased risk for hazardous tobacco (odds ratio [OR] = 0.83, p = 0.046) and alcohol (OR = 0.76, p = 0.03) use. Several sub-dimensions were associated with the outcomes in bivariate analyses. Using a principal components analysis to reduce the number of predictors for multivariate models, we obtained two components. 'Ability to change' was strongly related to change in hazardous tobacco use (OR = 0.54, p < 0.001), the second we interpreted as 'Other change language dimensions' and which was significantly related to change in hazardous alcohol use (OR = 0.81, p = 0.05). CONCLUSIONS: The present findings lend initial support for the predictive validity of the Change Questionnaire on hazardous tobacco and alcohol use, making it an interesting and potentially useful tool for assessing motivation to change among young males.
Resumo:
We studied whether readiness to change predicts alcohol consumption (drinks per day) 3 months later in 267 medical inpatients with unhealthy alcohol use. We used 3 readiness to change measures: a 1 to 10 visual analog scale (VAS) and two factors of the Stages of Change Readiness and Treatment Eagerness Scale: Perception of Problems (PP) and Taking Action (TA). Subjects with the highest level of VAS-measured readiness consumed significantly fewer drinks 3 months later [Incidence rate ratio (IRR) and 95% confidence interval (CI): 0.57 (0.36, 0.91) highest vs. lowest tertile]. Greater PP was associated with more drinking [IRR (95%CI): 1.94 (1.02, 3.68) third vs. lowest quartile]. Greater TA scores were associated with less drinking [IRR (95%CI): 0.42 (0.23, 0.78) highest vs. lowest quartile]. Perception of Problems' association with more drinking may reflect severity rather than an aspect of readiness associated with ability to change; high levels of Taking Action appear to predict less drinking. Although assessing readiness to change may have clinical utility, assessing the patient's planned actions may have more predictive value for future improvement in alcohol consumption.
Resumo:
Much attention has been paid to the effects of climate change on species' range reductions and extinctions. There is however surprisingly little information on how climate change driven threat may impact the tree of life and result in loss of phylogenetic diversity (PD). Some plant families and mammalian orders reveal nonrandom extinction patterns, but many other plant families do not. Do these discrepancies reflect different speciation histories and does climate induced extinction result in the same discrepancies among different groups? Answers to these questions require representative taxon sampling. Here, we combine phylogenetic analyses, species distribution modeling, and climate change projections on two of the largest plant families in the Cape Floristic Region (Proteaceae and Restionaceae), as well as the second most diverse mammalian order in Southern Africa (Chiroptera), and an herbivorous insect genus (Platypleura) in the family Cicadidae to answer this question. We model current and future species distributions to assess species threat levels over the next 70years, and then compare projected with random PD survival. Results for these animal and plant clades reveal congruence. PD losses are not significantly higher under predicted extinction than under random extinction simulations. So far the evidence suggests that focusing resources on climate threatened species alone may not result in disproportionate benefits for the preservation of evolutionary history.
Resumo:
A cryo-electron microscopy study of supercoiled DNA molecules freely suspended in cryo-vitrified buffer was combined with Monte Carlo simulations and gel electrophoretic analysis to investigate the role of intersegmental electrostatic repulsion in determining the shape of supercoiled DNA molecules. It is demonstrated here that a decrease of DNA-DNA repulsion by increasing concentrations of counterions causes a higher fraction of the linking number deficit to be partitioned into writhe. When counterions reach concentrations likely to be present under in vivo conditions, naturally supercoiled plasmids adopt a tightly interwound conformation. In these tightly supercoiled DNA molecules the opposing segments of interwound superhelix seem to directly contact each other. This form of supercoiling, where two DNA helices interact laterally, may represent an important functional state of DNA. In the particular case of supercoiled minicircles (178 bp) the delta Lk = -2 topoisomers undergo a sharp structural transition from almost planar circles in low salt buffers to strongly writhed "figure-eight" conformations in buffers containing neutralizing concentrations of counterions. Possible implications of this observed structural transition in DNA are discussed.
Resumo:
OBJECTIVES: To document biopsychosocial profiles of patients with rheumatoid arthritis (RA) by means of the INTERMED and to correlate the results with conventional methods of disease assessment and health care utilization. METHODS: Patients with RA (n = 75) were evaluated with the INTERMED, an instrument for assessing case complexity and care needs. Based on their INTERMED scores, patients were compared with regard to severity of illness, functional status, and health care utilization. RESULTS: In cluster analysis, a 2-cluster solution emerged, with about half of the patients characterized as complex. Complex patients scoring especially high in the psychosocial domain of the INTERMED were disabled significantly more often and took more psychotropic drugs. Although the 2 patient groups did not differ in severity of illness and functional status, complex patients rated their illness as more severe on subjective measures and on most items of the Medical Outcomes Study Short Form 36. Complex patients showed increased health care utilization despite a similar biologic profile. CONCLUSIONS: The INTERMED identified complex patients with increased health care utilization, provided meaningful and comprehensive patient information, and proved to be easy to implement and advantageous compared with conventional methods of disease assessment. Intervention studies will have to demonstrate whether management strategies based on INTERMED profiles can improve treatment response and outcome of complex patients.
Resumo:
Many endangered species persist as a series of isolated populations, with some populations more genetically diverse than others. If climate change disproportionately threatens the most diverse populations, the species' ability to adapt (and hence its long-term viability) may be affected more severely than would be apparent by its numerical reduction. In the present study, we combine genetic data with modelling of species distributions under climate change to document this situation in an endangered lizard (Eulamprus leuraensis) from montane southeastern Australia. The species is known from only about 40 isolated swamps. Genetic diversity of lizard populations is greater in some sites than others, presumably reflecting consistently high habitat suitability over evolutionary time. Species distribution modelling suggests that the most genetically diverse populations are the ones most at risk from climate change, so that global warming will erode the species' genetic variability faster than it curtails the species' geographic distribution.
Resumo:
Continental-scale assessments of 21st century global impacts of climate change on biodiversity have forecasted range contractions for many species. These coarse resolution studies are, however, of limited relevance for projecting risks to biodiversity in mountain systems, where pronounced microclimatic variation could allow species to persist locally, and are ill-suited for assessment of species-specific threat in particular regions. Here, we assess the impacts of climate change on 2632 plant species across all major European mountain ranges, using high-resolution (ca. 100 m) species samples and data expressing four future climate scenarios. Projected habitat loss is greater for species distributed at higher elevations; depending on the climate scenario, we find 36-55% of alpine species, 31-51% of subalpine species and 19-46% of montane species lose more than 80% of their suitable habitat by 2070-2100. While our high-resolution analyses consistently indicate marked levels of threat to cold-adapted mountain florae across Europe, they also reveal unequal distribution of this threat across the various mountain ranges. Impacts on florae from regions projected to undergo increased warming accompanied by decreased precipitation, such as the Pyrenees and the Eastern Austrian Alps, will likely be greater than on florae in regions where the increase in temperature is less pronounced and rainfall increases concomitantly, such as in the Norwegian Scandes and the Scottish Highlands. This suggests that change in precipitation, not only warming, plays an important role in determining the potential impacts of climate change on vegetation.