42 resultados para micélio extra-radicular
Resumo:
In many bird populations, individuals display one of several genetically inherited colour morphs. Colour polymorphism can be maintained by several mechanisms one of which being frequency-dependent selection with colour morphs signalling alternative mating strategies. One morph may be dominant and territorial, and another one adopt a sneaky behaviour to gain access to fertile females. We tested this hypothesis in the barn owl Tyto alba in which coloration varies from reddish-brown to white. This trait is heritable and neither sensitive to the environment in which individuals live nor to body condition. In Switzerland, reddish-brown males were observed to feed their brood at a higher rate and to produce more offspring than white males. This observation lead us to hypothesize that white males may equalise fitness by investing more effort in extra-pair copulations. This hypothesis predicts that lighter Coloured males produce more extra-pair young, have larger testes and higher levels of circulating testosterone. However, our results are not consistent with these three predictions. First, paternity analyses of 54 broods with a total of 211 offspring revealed that only one young was not sired by the male that was feeding it. Second, testes size was not correlated with male plumage coloration suggesting that white males are not sexually more active. Finally, in nestlings at the time of feather growth testosterone level was not related to plumage coloration suggesting that this androgen is not required for the expression of this plumage trait. Our study therefore indicates that in the barn owl colour polymorphism plays no role in the probability of producing extra-pair young.
Resumo:
The synthesis of peptides which have the natriuretic and vasodilator properties of the atrial natriuretic factor has made it possible to study the physiological role of this recently discovered hormonal system. In addition to renal effects, atrial natriuretic peptides exert vascular, hemodynamic and endocrine actions which may participate in the regulation of plasma and interstitial volume as well as arterial blood pressure. Its acute hypotensive effect, which was observed in normal volunteers and in patients with cardiac failure or hypertension, is not entirely explained by its direct vasodilator effect. The complexity of its role is demonstrated by its inhibiting action on the synthesis and/or the activity of other vasoactive hormones. The observed increase in hematocrit suggests that vascular permeability may be enhanced; the resulting consequences, e.g. on blood viscosity, still need to be elucidated. When infusing atrial natriuretic peptides, there exists a clear delay between the moment steady-state plasma levels are achieved and peak effect occurs. This renders the interpretation of the results very difficult. At this moment, the physiological role of atrial natriuretic peptides as well as their potential future use as therapeutic agents cannot yet be fully appreciated.
Resumo:
Detection of variations in blood glucose concentrations by pancreatic beta-cells and a subsequent appropriate secretion of insulin are key events in the control of glucose homeostasis. Because a decreased capability to sense glycemic changes is a hallmark of type 2 diabetes, the glucose signalling pathway leading to insulin secretion in pancreatic beta-cells has been extensively studied. This signalling mechanism depends on glucose metabolism and requires the presence of specific molecules such as GLUT2, glucokinase and the K(ATP) channel subunits Kir6.2 and SUR1. Other cells are also able to sense variations in glycemia or in local glucose concentrations and to modulate different physiological functions participating in the general control of glucose and energy homeostasis. These include cells forming the hepatoportal vein glucose sensor, which controls glucose storage in the liver, counterregulation, food intake and glucose utilization by peripheral tissues and neurons in the hypothalamus and brainstem whose firing rates are modulated by local variations in glucose concentrations or, when not protected by a blood-brain barrier, directly by changes in blood glucose levels. These glucose-sensing neurons are involved in the control of insulin and glucagon secretion, food intake and energy expenditure. Here, recent physiological studies performed with GLUT2-/- mice will be described, which indicate that this transporter is essential for glucose sensing by pancreatic beta-cells, by the hepatoportal sensor and by sensors, probably located centrally, which control activity of the autonomic nervous system and stimulate glucagon secretion. These studies may pave the way to a fine dissection of the molecular and cellular components of extra-pancreatic glucose sensors involved in the control of glucose and energy homeostasis.
Resumo:
We have investigated genetic parentage in a Swiss population of tawny owls (Strix aluco). To this end, we performed genetic analysis for six polymorphic loci of 49 avian microsatellite loci tested for cross-species amplification. We found one extra-pair young out of 137 (0.7%) nestlings in 37 families (2.7%). There was no intra-specific brood parasitism. Our results are in accordance with previous findings for other raptors and owls that genetic monogamy is the rule. Female tawny owls cannot raise offspring without a substantial contribution by their mates. Hence one favoured hypothesis is that high paternal investment in reproduction selects for behaviour that prevents cuckoldry.